NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

19960122 078

THESIS

A CLIENT/SERVER APPLICATION
DEVELOPMENT METHODOLOGY
' FOR DOD
by
David R. McDermitt
June, 1995

Thesis Advisors: James C. Emery
Magdi N. Kamel

Approved for public release; distribution is unlimited.

DTG QUALITY (NSPECTED 1

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this cotlection of infornation is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed. and completing and reviewing the collection of information. Send comiments regarding this burden estimate or any
other aspect of this collection of information. including suggestions for reducing this burden. 1o Washington Headquarters Services. Directorate for [nformation
Operations and Reports, 1215 Jefferson Davis Highway. Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction
Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June, 1995 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A CLIENT/SERVER APPLICATION DEVELOPMENT METHODODLOGY FOR DOD

6. AUTHOR McDermitt, David R.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

Since the Department of Defense hegan utilizing electronic computers in the 1950°s! it has been plagued by
inefficient software development practices. The result of such practices was software that was over budget, behind
schedule, of poor quality, and one that usually did not satisfy user requirements. The rapid pace with which business
needs are changing, particularly within DoD, demand that software be developed under even tighter schedules than
have been experienced before.

In order to respond to the demand and provide a product which meets budgetary and schedule constraints without
sacrificing quality, it is absolutely necessary that DoD adopt modern methods and practices for developing software.

This thesis presents a modem methodology for developing applications in a client/server environment. The
methodology is based on a combination of modeling and prototyping to deliver quality applications quickly and
inexpensively. An example application was developed based on the proposed methodology and serves as a model for
migrating legacy DoD mainframe applications to modern client/server technology. It is hoped that this process will
serve as an example of how DoD can benefit from modern development strategies and tools.

14. SUBJECT TERMS Client/Server, Application Development, Legacy Systems, System Migration. | 15. NUMBER OF PAGES
86

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassifted UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Sud. 239-18 298-102

il

Approved for public release; distribution is unlimited.

A CLIENT/SERVER APPLICATION DEVELOPMENT
METHODOLOGY FOR DOD

David R. McDermitt
Lieutenant, United States Navy
B.S., Auburn University, 1989

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN
INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
J une, 1995

—

Author:

Dav1d R. McDermltt
Approved by: QM

es C. Emery, The31s Co-ﬁ!dvisor

Magdi N. Kga}nel, T'hesiio—‘Advxsor ‘

David R. \’hipple, yrman
Department of Systems MAnagement

ABSTRACT

Since the Department of Defense began utilizing electronic computers in the
1950’s, it has been plagued by inefficient software development practices. The result of
such practices was software that was over budget, behind schedule, of poor quality, and
one that usually did not satisfy user requirements. The rapid pace with which business
needs are changing, particularly within DoD, demand that software be developed under
even tighter schedules than have been experienced before.

In order to respond to the demand and provide a product which meets budgetary
and schedule constraints without sacrificing quality, it is absolutely necessary that DoD
adopt modern methods and practices for developing software.

This thesis presents a modern methodology for developing applications in a
client/server environment. The methodology is based on a combination of modeling and
prototyping to deliver quality applications quickly and inexpensively. An example
application was developed based ‘on the proposed methodology and serves as a model for
migrating legacy DoD mainframe applications to modern client/server technology. It is

hoped that this process will serve as an example of how DoD can benefit from modern

development strategies and tools. Accesion For

NTIS CRA&I g
1 DTIC TAB
Unannounced 0
Justification

By

Distribution/

Availability Codes

) Avail and[or
Dist Special

A-

vi

TABLE OF CONTENTS

L INTRODUCTION ... 1
A. BACKGROUND ... 1
B. OBJECTIVES e 2
C. SCOPE, LIMITATIONS, AND ASSUMPTIONS ... 2
D. DEFINITIONS AND ABBREVIATIONS ... 3
E. ORGANIZATION ... i 4

II. OVERVIEW OF CLIENT/SERVER COMPUTING ... 5
A. WHAT IS CLIENT/SERVER COMPUTING? ... 5
B. COSTS AND BENEFITS OF CLIENT/SERVER COMPUTING............... 7
C. CLIENT/SERVER ARCHITECTURES ... 9
D. PARTITIONING THE CLIENT/SERVER APPLICATION 11
E. COMPONENTS OF CLIENT/SERVER APPLICATIONS 12

III. CLIENT/SERVER DEVELOPMENT METHODOLOGY ..., 17
A. REQUIREMENT ANALYSIS ... PPN e 19
B. SYSTEM DESIGN ... 23
C. MIDDLEWARE DEVELOPMENT ... 28
D. SYSTEM IMPLEMENTATION. ... 30
E. SYSTEM MAINTENANCE AND EVOLUTION ..., 34

vii

IV. HUMAN RESOURCES OFFICE - ACASE STUDY ... 35

A. INTRODUCTION ..ottt 35
B. DEFENSE CIVILIAN PERSONNEL DATA SYSTEM (DCPDS) 35
C. ELECTRONIC SYSTEM FOR PERSONNEL (ESP) ... 40
D. CLIENT/SERVER PROVIDES THE ANSWER ... 42
V. LESSONS LEARNED AND FURTHER RESEARCH ... 49
A. LESSONS LEARNED ..ottt 49
B. FUTURE WORK ... 5t
APPENDIX. HRS APPLICATION FORMS AND SOURCE CODE ... 53
LIST OF REFERENCES L. . e 75
INITIAL DISTRIBUTION LIST .o 77

viii

I. INTRODUCTION

A. BACKGROUND

During this decade American society has experienced a transformation unlike any
seen before. Organizations of all kinds are forced to do more with fewer assets if they
expect to remain competitive in the market place. Nowhere is this more true than in the
Department of Defense.

It is generally agreed that, in order to survive, organizations have to re-think the
way they do business. Organizational downsizing and the distribution of responsibilities
are common themes in response to the tremendous global changes that surround us. As
budgets and spending continue to shrink, it is increasingly necessary to push decision
making power out to the organization’s periphery. This empowerment requires that people
at all levels of the organization be provided with appropriate tools to help them in their
daily decision making processes. |

In many ways, the evolution of information systems architectures mimic the
evolution of the organizations that they serve. Since the 1950’s computers have become
increasingly important for the conduct of business, in industry and in defense.

. In the 50°s and 60’s when most organizations were highly centralized, the
mainframe was the dominate fixture on the corporate computing landscape. In the 70’s
and 80’s, és organizations spread out to include national and international divisions, it
became increasingly difficult to request reports and data services from a centralized MIS
group. The mainframe continued to thrive as did the central bureaucracy of most large
organizations; but because information in corporate databases was difficult to access and

use, end-users supplemented mainframes with desktop computing using personal

computers.

In response to a growing demand for speedy, ad-hoc reports and easy to use
computer applications, self-contained “stovepipe” information systems were developed to
enable corporate divisions to get their work done. The proliferation of powerful desktop
computers and easy to use database and spreadsheet software aided in driving the PC to a
position of prominence in corporate computing, a position it still occupies today.

As organizations have decentralized in the 1990’s, so have their information
systems. The power available on desktop computers makes attractive presentation of
information possible, and the availability of computing power makes it logical to share the
burden for processing the information.

This thesis is about providing end-users with powerful computing solutions that
access worldwide data and provide answers to complex business problems. It examines
how applications are developed that take advantage of distributed processing, computers
connected via networks, and shared information in corporate databases. The thesis also

addresses the issues of maintaining control over dispersed applications and their users.
B. OBJECTIVES

The primary objective of this research is to lay the foundation for thinking about
client/server system development within the Department of Defense. Provisionally, the
case study, including the subsequent system design and implementation, provide the
Human Resources Office of the Naval Postgraduate School with a maintainable, state-of-
the-art client/server system. This thesis argues that the HRO system serves as a model for
other commands in migrating from existing, monolithic applications to contemporary,

distributed architectures.
C. SCOPE, LIMITATIONS, AND ASSUMPTIONS

The scope of this project is limited to new application development. In so far as

existing applications are able to be modeled as new development, they will be discussed.

The HRO case study is an example of this type. Because the actual implementation of the

solution involves so much new development, the project can be treated as a new system.
It is assumed in this thesis that the reader have a strong grasp of computer systems

— in particular, a general working knowledge of client/server systems, database systems,

and computer programming is assumed.
D. DEFINITIONS AND ABBREVIATIONS

The following are acronyms used in this thesis

BPR Business Process Re-engineering

C/S Client/Server

COBOL Common Business Oriented Language
CRT Cathode Ray Tube

DCPDS Defense Civilian Personnel Data System
DIN Data Identification Number

DoD Department of Defense

ESP Electronic System for Personnel

HRO Human Resources Office

IS Information Systems

IT Information Technology

Kbps Kilobits per Second

LAN Local Area Network

Mbps Megabits per Second

MIS Management Information Systems
MS-DOS Microsoft Disk Operating System
NOS Network Operating System

NPS Naval Postgraduate School

OLTP On-Line Transaction Processing

OPM Office of Personnel Management

PC Personal Computer

RAD Rapid Application Development
SQL Structured Query Language

Ul User Interface

WAN Wide Area Network

E. ORGANIZATION

Chapter II provides a brief discussion of the technology that serves as a backbone
for client/server applications. The chapter attempts to provide a definition for client/server
computing and includes sections on the general benefits and costs of implementing
client/server solutions. The chapter further discusses the different architectures on which a
client/server system might be based. It closes with factors to be considered when
developing applications for deployment in a client/server environment.

Chapter III presents a systematic methodology for the analysis, design, and
implementation of client/server applications. The chapter focuses on the analysis and
design of the data and the functionality to be provided. Unique to the client/server
environment are decisions regarding the allocation of data and functionality and where
they should be located. These considerations are discussed in depth in the design of
functional and data “partitions.”

Chapter IV is a case study that tracks the development of a real-world client/server
application, developed by the author for use at the Naval Postgraduate School. The case
study is particularly relevant in its treatment of the migration of a system from a
monolithic mainframe application to a contemporary client/server architecture.

Chapter V presents conclusions and makes recommendations for further research
in this area.

The appendix provides images of the user interface of the case study. Complete

source code listings are provided as additional documentation.

II. OVERVIEW OF CLIENT/SERVER COMPUTING

A. WHAT IS CLIENT/SERVER COMPUTING?

In the past, information systems that allowed multiple users to access central data
were designed for use on mainframe computers. The explosion of computing power
available on the desktop has provided a more efficient means for accessing central data.
Modern information systems that allow multiple users to access central data consist of
applications that call for data in addition to the actual data repository. In addition to the
physical separation of the application and the data, most modern approaches separate
processing as well. Normally there is a physical separation, but it is the logical separation
of processing and data that forms the key to client/server. In a client/server environment,
the storage of data and. the processing power are shared among clients and servers. Simply
stated, clients are processes that request service from other processes. Servers are the
processes that provide that service. It is possible that servers may also be clients, but most
clients are generally not servers.

The Gartner Group, an information technology research consultancy, have
developed a popular model for defining the layers that make up various versions of
client/server information systems. These layers segregate the activities of the system and
define clearly the processing activity. According to this model, the layers are the
presentation layer, the application logic layer, and the data management layer.

The presentation layer is solely responsible for generating the user interface for the
application. It receives information from the application logic layer and displays it to the
user in a format defined by the application. User input is also handled by the presentation
layer. In client/server systems all presentation layer processing is usually performed by the

client.

The application logic layer contains the “intelligence” of the program. Application

logic is responsible for interpreting user input prior to making requests of the server and

for manipulating data after it has been received from the server. Application logic is

frequently shared between clients and servers to optimize performance of the application.

The data management layer is focused on efficiently responding to requests for

data. This is a server function, regardless of the physical location of the database

management system.

The Gartner Group further observes that client/server systems can be classified

according to the allocation of tasks among the clients and servers. Its classification

scheme, known as the “five strategies model,” details the distribution of each of the layers.

(see figure 1)

- 0 < o Wn

o A~ Wn

Distributed Remote Distributed Remote Dala Distributed
Presentation Presentation Function Management Database
Data Data Data Data Data
Management Management Management Management Management
s s s s s
Application Application Application
Logic Logic Logic
: Data
Presentation Management
Application Application Application
Logic Logic Logic
v v v v v
Presentation Presentation Presentation Presentation Presentation

...:Q.—.——O

O - W

Figure 1 : The Five Strategics Model

Partitioning functionality between client and server platforms.

[Ref. 1]

Robert Orfali further defines client/server systems as those possessing the

following characteristics [Ref. 2]:

e Service: Client/Server is primarily a relationship between processes
running on separate machines.

o Shared resources: A server can service many clients at the same time
and regulate their access to shared resources.

o Asymmetrical protocols: There is a many-to-one relationship between
clients and server.

e Transparency of location: Client/Server software usually masks the
location of the server from the clients.

o Mix and match: Software is independent of hardware or operating
system software platforms.

o Message-based exchanges: Loosely coupled systems which interact
through a message-passing mechanism.

o Encapsulation of services: A message tells a server what service is
requested; it is then up to the server to determine how to get the job
done.

e Scaleability: Client/Server systems can be scaled horizontally or
vertically. Horizontal scaling means adding or removing client
workstations with only a slight performance impact. Vertical scaling
means migrating to a larger and faster server machine or multiservers.

o Integrity: The server code and server data is centrally maintained, which
results in cheaper maintenance and guarding of shared data integrity. At
the same time, the clients remain personal and independent.

B. COSTS AND BENEFITS OF CLIENT/SERVER COMPUTING

Little concrete data exists to document the costs of implementing a client/server
architecture. As more organizations implement client/server solutions, they discover that
these solutions may not represent a cost savings as originally anticipated. What many
organizations are discovering is that the additional costs of doing business in the
client/server world pay off in intangible ways.

Research recently conducted by the Gartner Group reveals that the costs involved

in implementing client/server solutions may be two or three times that of a comparable

R

mainframe solution. Due to the fact that almost all mainframe costs can be isolated in the
information systems department, it is easier to quantify those costs. In client/server
implementations, costs are fragmented throughout the organization, often not identified
explicitly as IT costs. As a result, costs are generally very difficult to quantify.
Additional costs include increased training, development demands, system and
application maintenance, and system planning. It is estimated that over 70 percent of the
costs involved in a client/server system are labor costs, including end-user labor (41%),
end-user support labor (15%), application development labor (8%), and server operation
labor(8%). This compares with the meager expenditures for client and server hardware,

which represent only 18% of the total expenditure [Ref. 3]

Other
10%

Client &
Server
Hardw are

18%
End user labor

41%

Server Ops
Labor
8%
App Dev labor
8%

End user
support labor
15%

Figure 2 : Client/Server Expenses
[Ref. 3}

The benefits that most organizations experience are in the form of more effective
information sharing, easier modifications to changing business environments, and
improved customer service. While the costs of implementing client/server may be high, the
costs of ignoring the benefits are certainly higher. The market, at least, judges the
client/server architecture to be attractive. For example, Dataquest, the San Jose based
market research firm, reports that firms in the United Kingdom with full or partial
client/server information systems will experience a growth rate of 80 percent or more

between now and the year 2000.

C. CLIENT/SERVER ARCHITECTURES

As depicted in Table 1, the components of client/server have migrated between
client and server while still being considered part of the formal client/server model. Prior
to the release of the Gartner Group model, the lack of a defined client/server
implementations led to considerable confusion. Vendor claims have sustained and added
fuel to the argument. For purposes of this discussion, the type of service provided by the
individual software solution will dictate what type of client/server architecture is

implemented.

1. File Server

In a file server implementation, the server receives requests from clients for
individual files. The server, in turn, returns to the client the requested file for processing by
the client. The server takes no active role in the processing of the data file; it acts only as a

repository for information stored as separate files.

2. Database Server

A database server provides the client with the ability to request data using SQL
statements that are processed by the server. The server returns to the client selected
results from each SQL statement received from the client. The client runs an application

that generates the SQL statements based on inputs from the user and then presents the

returned data back to the user in a useful format (which may require considerable
processing power on the client to transform server data into useful information). Database
servers are most commonly used in decision support systems where most queries are

generated by the user on a client machine at run time.

3. Transaction Server

A transaction server is similar to a database server except that the SQL statements
are stored on the server and compiled as a stored procedure or transaction. The
transactions are triggered by the client application and then data is supplied to the client
for further processing or display. Stored procedures offer tremendous performance
advantages due to their compiled nature, and should be used whenever practicable to
boost performance of the overall system. These types of applications are generally referred
to as On-Line Transaction Processing (OLTP) systems and are typically used in

implementations where response time is critical.

4. Groupware

Groupware is unlike other forms of client/server systems. Popularized by the
commercially successful Lotus Notes™ product, groupware is a way for groups of
individuals to share information and automate the flow of work. Groupware is unique in
the types of data and information that it allows to be shared. Utilizing products like Lotus
Notes™, it is possible for physically dispersed individuals to collaborate on common work
projects. Shared access to complex data and information is made easier through the use of

these proprietary systems.

5. Distributed Objects

The most recent innovation in client/server architectures involves independent
objects that communicate to accomplish a task. These “distributed objects” encapsulate
the complexity of their processes and communicate with each other via a set of

standardized methods. Client objects and server objects exchange requests and responses

10

through the use of an object request broker (ORB). The ORB handles the details of

locating the required objects and timing of message dispatch.

D. PARTITIONING THE CLIENT/SERVER APPLICATION

In any client/server application it is necessary to decide which platform will “own”
certain processes. Will it be the client or the server? In a multi-server environment, whose

server will own the process?

1. Server-Based Processing

One of the main advantages of having a client/server system is that the work load
can be shared. The decisions that determine how the processing will be shared generally
occur through a process called “tuning”. Tuning identifies performance-critical portions of
the application and locates those procedures on either the client or the server to maximize
performance. By centrally locating business logic on the server, modifications to that logic
can be implemented quickly, easily, and transparently. However, the availability of
powerful and inexpensive processors in many clients force careful consideration of the
trade-offs involved.

The most common implementation of server-based business logic is stored
procedures. Because they are typically compiled, stored procedures allow for fast
execution and higher relative transaction rates.

It is important to understand that stored procedures are not a panacea. Ifit is
necessary to implement logic that cannot be expressed in database calls or the data resides
on heterogeneous servers, then stored procedures may be a partial solution that must be

supplemented by additional processing on the client.

2. Client-Based Processing

The most common use of client-based processing is in the implementation of the
graphical user interface, or GUI. Because the GUI represents the “look and feel” of the

entire application, a successful GUI design will frequently determine the overall success of

the application. The GUI will generate requests for the server based on input received
from the user. In addition to GUI processing, local business rules must also be processed

by the client.

3. Cooperative Processing

Depending on the implementation selected, some processes must be shared across
the network between the client and the server. Special attention should be paid to the
design of the shared processes to limit communication between the client and server
portions. The overhead involved in extensive inter-process communications could easily
degrade performance to an unacceptable level, as well as adding significantly to

communication costs.

E. COMPONENTS OF CLIENT/SERVER APPLICATIONS

The overall client/server application has three main players: the client, the server,
and the middleware. These three separate components must be chosen carefully to ensure
that they will be interoperable and that they will support the collaboration necessary to
achieve the desired result. This section will discuss each component of the client/server
environment in some detail. |

The discussion in this section relies heavily on material from Robert Orfali’s
Essential Client/Server Survival Guide, an excellent introduction to the concepts

necessary to understand client/server systems. [Ref. 2]

1. The Client

a) Operating System

The type of operating system (OS) running on the client will determine what type
of user interface the application will support. All operating systems must provide methods
to allow requests and replies to be processed. In addition, some type of file transfer

mechanism is necessary. Services that are highly desirable include preemptive multitasking,

12

priority tasking, intercommunication processes, and multiple threads. These features assist

in the efficient utilization of the client in handling the replies from the server.

b) Interface Concerns

Depending on the application, a GUI may or may not be required. In simple
applications where clients are being used for nothing more than data entry and perhaps
limited user feedback, a full-blown GUI may be overkill. Furthermore, a client that relies
on a GUI may leave the user in an undesirable position if it is not properly implemented,

following strict design guidelines. Consistency in UI design is frequently overlooked.

¢) Application Design

The design of the application is based on the business needs that the application is
intended to fulfill, the data that the application will héve available, and the information that
is expected from the application. Organizations must adapt quickly to changing market
conditions to remain competitive. The rapidly shifting requirements that businesses
experience dictate short development cycles.

The process that has proved most advantageous is the Rapid Application
Development cycle. This development cycle focuses on quickly developing working
prototypes that deliver basic functionality, reviewing the design often, discussing potential
improvements, and delivering the application. The greatest benefit of RAD is its extreme
flexibility, hence allowing developers to deliver higher quality software in shorter periods

of time.

d) Development Tools

The development tools that are selected depend to a great extent on the client
operating system. For example, under Microsoft Windows there are many development
environments that make designing, developing, and delivering software efficient and cost-
effective. Fewer tools are available for other operating systems because the market force

has tended to focus attention on the Microsoft Windows platform.

2. The Middleware

a) Transport Stacks

Transport stacks are the communications standards that govern the way computers
can talk to each other. The choice of transport stack depends on the type of operating
system, the Network Operating System and whether a Wide Area Network (WAN) or
Local Area Network (LAN) will be used. Some of these choices include TCP/IP,
NetBIOS, IPX/SPX, DECnet, OSI, and AppleTalk.

b) Network Operating Systems

There are three main functions of Network Operating Systems(NOS). The NOS
extends the local operating system’s functionality by allowing access to networked devices
such as printers, file directories, and modem pools. Additionally, the NOS makes the
connection to these remote devices appear fransparent, meaning that they appear to the
user to be just like devices that are connected directly to the user’s computer. The third
function provided by the NOS is to allow for coordination of applications that are split

across client/server lines.

¢) Service-Specific Middleware

Service-specific middleware is the layer that is responsible for managing tasks that
are specific to a service offered by the server. The most widely recognized service-specific
middleware standards include:

¢ Database middleware

Transactional Remote Procedure Call middleware

Groupware middleware

Object middleware

Distributed System management middleware

14

3. The Server
The software that residing on the server system enables it to perform functions

necessary to provide services requested from it. The remaining paragraphs in this section

describe the components of software that typically reside on the server.

a) Operating System

All operating systems are made up of two types of service, base and extended.

Base services are those which are a part of the core, or kernel, of the operating system.
_ Extended services provide additional functionality in the form of “add-ins.” Extended
services or extensions are typically modular pieces of software that can be “snapped”

together to provide the exact mix of services required for a particular server. [Ref. 2]

b) Network Operating System

The network operating system, or NOS, provides the developer with a
programming interface that allows him to communicate with the network without having
to address the hardware directly. The NOS, acting as an intermediary, eases the burden on
the software developer because applications can be designed for the NOS application
programming interface, or API. The API allows the application developer to utilize
functionality built into the NOS without having to write computer code that performs
every physical task that must be accomplished. This promotes hardware independence by
providing a NOS and its associated API that will operate on many different hardware

platforms.

¢) Network Computing Environment

Hardware independence can be further promoted through support for standards
that support the network computing environment. Several competing standards vie for
market share in this competition to determine how applications that reside on physically
distant machines of different hardware configurations will communicate. The Open

Standards Foundation, or OSF, promotes the Distributed Computing Environment. Sun

o

Microsystems is promoting the Open Network Computing (ONC) standard. These two
standards offer similar services, they differ in that DCE relies on CCITT protocol
standards that are recognized worldwide while ONC relies on TCP/IP protocol standards,

recognized most widely in the United States.

d) Network Management Environment

Because client/server systems are normally geographically dispersed, it is necessary
to provide a means for managing remote systems. Utilizing network management
software, system administrators can configure servers that are located anywhere. The
three main products that are competing to become the standard are the Distribute
Management Environment (DME), the Object Management Architecture (OMA), and the
Ul-Atlas. Each of these products has particular strengths and weaknesses, but generally
DME is utilized by those choosing to adopt the OST model, Ul-Atlas by those selected
Unix and TCP/IP, and OMA by those focusing on object request brokers.

III. CLIENT/SERVER DEVELOPMENT METHODOLOGY

A major benefit of client/server technology is that it enables a shift toward thinner
layers of middle management and assist in empowering the workforce. The core of this
technology changes how work is accomplished and who is considered a “user.” In
addition, the rapid growth in the volume of software demanded necessitates higher
programmer productivity. These modifications require that development strategies shift to
accommodate the new demand. Traditional software development techniques fail to
provide an adequate methodology for guiding the development of these new types of
architectures.

In addition to the shift in organizational climate that fosters the development of
client/server systems, mission requirements in this new environment change rapidly with
ever-shrinking project cycles. The development time for software using conventional
methods often exceeds the cycle time of the changes. Adaptive and productive
methodologies are required to permit business systems to keep up with business needs.
Part of this process involves quickly producing working software that satisfies subsets of
the overall requirements. These working models or prototypes are then enhanced and
improved in an iterative fashion to produce robust applications that satisfy broader user
needs. This process essentially continues “forever” as the organization continues to adapt
to changes in missions, perceived user needs, and technology. The process is known as
Rapid Application Development, or RAD.

The scale of the system to be developed will dictate whether using a formal or
explicit methodology is necessary. There is considerable evidence that for small and
medium-sized projects, formal methodologies stand in the way of building systems quickly
and inexpensively, while best meeting the user’s requirements. When does a system cease
to be “medium sized?” This is a complex question that has no real answer, but certainly

when multiple servers are involved, complexity will increase to a state where a

17

Need Recognition

| | tus
Problem mpe
|dentification
User Overall User
Requirement Requirements Requirement——————
Narrative Ana|ysis Narrative
Functorat | Data
Requirements v i ! Requirements
! |
1 BPR !
: 1
|
Functionat e) »
List i Narrative
]
. . Conceptual
Functional Functional Planning -
o — b - l¢——Entities—————
Decomposition Decomposition Matricies Entitie Database
Model
Functional Cgr;g:s::al
Mapping (ERD's)
Functional ‘
Decomposition
Diagram .
Distribution Logical
) Database
: / Design)
Function Design
Partitions
Prototype Repository
Partitions Global
Logical
Schema
improve RAD Test Communications Technology &
Cycle Requirements Infrastructure
Survey
Physical
Database
Review Design
Network l
Design Tables
Accepted Database
Application Implementation

Figure 3 : Graphical Representation of Client/Server Development Methodology

18

formalized methodology becomes desirable.[Ref. 4]
The following sections present the phases and steps of a generic methodology. An

overview of this methodology is presented as Figure 3.

A. REQUIREMENT ANALYSIS

Determining the requirements of the system is the first step in the development
process. In a broad sense the requirements analysis provides a “birds eye” view of the
system. It answers several general questions: What is to be provided? What must exist in
order to meet the requirement? What processes are needed to transform available data into
required information? In short, what are the inputs, outputs, and transformations that take
place in the system.

In a client/server environment it is necessary to examine the system at three unique
levels. First, the entire system should be analyzed to determine the overall requirements.
The functional processes should then be examined to identify the “core” functionality that
the solution must provide in order to be viable. Next, an analysis of the data should be
undertaken to determine whether the proper data already exists or will have to be
appended to meet the requirements of the functional analysis. Last, a survey of the
organization’s existing communications infrastructure should be conducted to highlight

natural locations for data repositories.

1. Overall Requirements Analysis
The overall requirements analysis provides the application developer with his first
exposure to the system. The goal of this analysis is to gain an overall understanding of the
“application space,” in other words, how will the application fit with the organizations
current way of doing business. A main activity of overall requirements analysis is

conducting interviews with management and end users.

a) Management Interviews
Prior to the start of the development process, management must recognize that a

need exists. This need may reflect a deficiency in a current system or it may involve the

realization that a system of some type is required. Recognition of need and impetus to
react on that need is assumed prior to the commencement of the development process.

Several factors must be identified at the earliest stage possible. These factors are:
a) the overall plan for the application, b) how/if it will fit into existing systems, and c)
what will determine the application’s success. The importance of identifying these factors
early is instrumental to the success of the project. This process will limit the amount of
disagreement later in the development process.

The need for strong support from management cannot be overemphasized. Initial
meetings with management are crucial to the success of the project. If management is
excited at the prospect of improving or reinventing a system, that excitement will
undoubtedly spread throughout the organization. This improves the chances for success of

the overall system. Lack of management support is a prescription for certain failure.

b) End User Interviews

In a traditional system, end-user interviews are perhaps the most important stage in
the development process. While these interviews are no less important in a modern
methodology, a major difference between traditional and modern approaches is the
iterative nature in which they occur. Traditional methodologies emphasize the need for
meeting end-user requirements, but fail to account for the ever-changing nature of these
needs. An application developed without user inputs throughout the entire development
process is unlikely to represent the users requirements when it is delivered. An application
developed in accordance with a rapid application development cycle continually revisits
the suitability of the application to the users tasks.

During end-user interviews, it is vital to obtain as much information as possible
about how the user currently performs a task. This may mean examining an existing
system and obtaining forms, printouts, reports, manuals, regulations, etc... that describe
how work is accomplished. The purpose of analyzing the existing system is not to
duplicate the system, but to understand the fundamental needs of a process. Any analysis

that spends more effort than required to do this will suffer from the proverbial “paralysis

20

from analysis.”

End users are the individuals who will put the application to use daily. By reducing
to writing their view of what the system should require and what it should provide, the
application development team can compare this with the results of management interviews
to determine the correct “mix” for the system. This mix will determine if the application
serves as a seamless extension of work, making the task easier, or as an unwelcome
requirement that serves as an irritation and a hindrance in performing the task.

End users also provide an excellent source of information concerning what data an
existing system has available or what data should be made available to a new system. They
may not be aware of this knowledge, but a carefully constructed interview and a solid
working rapport will ensure that this information will eventually be obtained.

It is important to note that when any new change is introduced in an organization,
there will be resistance to its acceptance. This is true whether the change is the
introduction of a new employee or the development of a new computer application. In
order to improve the chances for success, it is necessary to identify and “bring onboard”

the natural leaders within the organization for whom the application is being developed.

2. Functional Requirements

Borrowed from the field of Information Engineering, functional requirements
analysis is the process of identifying the steps in the processes that must be performed by
the system being developed. The process begins at the lowest level by determining what
tasks make up the system. These tasks are divided into “core” and “non-core” functions
and are further subdivided to identify greater levels of detail.

In order to identify the core functions for the system, we have to be aware of what
requirements must be met for a function to be considered core. We can determine the
purpose of the organization, either by examining so-called mission statements or by simply
breaking down exactly what the organization does.

Once the requirements for core functionality are outlined, we can identify the

individual processes which should be specified as core. These are the lowest level

21

functions that most closely relate to the purpose of the organization’s existence. When
first implemented, quick delivery of useful capability is vitally important. The initial core
must be viable in the sense that it can operate without future extension while still

providing valuable service.

3. Data Requirements
Data requirements analysis is conducted in parallel with functional analysis. It is
through the use of data analysis that we determine our basic inputs and outputs. By
identifying, in narrative form, the source of our data and the ways that users and
management expect output, it is possible to develop a better understanding of what data

should be maintained and where it should be located.

a) Identify Data Sources
In analyzing the overall system, it should become apparent where the data
originates. Regardless of the type of system, the source of the data will often dictate what
type of data serves as an input to the system.
The format of this input may have a very dramatic impact on how the new system
deals with the data on the “back end.” For most client/server systems this “back end” data

repository will be an SQL relational database.

b) Determine Desired Qutput
The type of information desired from the system can serve as an excellent indicator
of what type of data needs to be collected. In new systems, where little or no existing
infrastructure exists, identifying the desired output can help determine the type of data that
needs to be collected. For example, in order to provide information about an
organization’s attrition rate, data concerning when and how employees are terminated

would be required.

4. Conceptual Database Modeling

The conceptual database model transforms the data requirements narrative, the
output of the data requirements analysis phase, into the entities and relationships that form
the basis for the system’s conceptual schema. In addition, the conceptual database model

22

provides the planning matrices with the entities necessary to develop the functional
mapping, on which the application distribution is based.

a) Define System Entities
Entities are anything in the user’s work environment about which he wants to store
data. For example, in a sales system, it would be desirable to maintain information on
customers, suppliers, and products. By identifying the entities in the system, we develop a
high-level view of what we are tracking. This process leads to the natural identification of
the data to be maintained by the system. The entities identified in this phase will later be

implemented as database tables.

b) Determine Attributes And Relationships
Attributes and relationships define the properties of the entities and how they relate
to each other. The attributes of an entity further describe it. Since relationships define how
entities relate to each other, they provide some assistance in determining the business rules
followed by the system. One must define a relationship between, say, a customer order and
line-items on the order. The business rules define how that order should be processed and

what should be done in the event there is insufficient stock to fill an order.

B. SYSTEM DESIGN
Once a detailed analysis has been completed, the overall design of the system
should be a shared vision of all those involved. In following a construction paradigm, the
analysis correlating to architecture, we are now ready to examine the engineering or
design phase. Similar to the analysis phase, in design we will address functional and data

design.

1. Functional Decomposition
The output of functional analysis, the function list, provides the input to functional
design. In the functional design phase, the functions on the list are expanded or
decomposed into progressively greater levels of detail. Typically decomposition will go

“down for at least two levels for purposes of identifying a level of detail that adequately

23

describes business functions. The output of functional design will serve as the input for the

actual Rapid Application Development, or RAD, process.

2. Logical Database Design
In logical database design the conceptual database model developed in the
requirements phase is transformed into a database schema. A schema describes the
structure of a database. The global logical schema then is the overall structure of the
system’s databases. To develop the global schema, the component schemas of the

application developed during the conceptual phase are integrated into an overall schema.

3. Physical Database Design

Physical database design focuses on the physical design of the actual database
tables, the identification of primary and secondary keys, access paths, and other associated
data structures. The physical design is specific to the database management system
selected for the system. Examples of current popular relational database management
systems are Interbase, Oracle, Sybase, Informix, and SQL Server. All these products
support the SQL-92 standard, which is the defacto standard for relational databases. Each
one of these products also implement special features which are specific to the DBMS.

These features include referential integrity, stored procedures, and triggers.

4. Partitioning Design
Unique to the design of client/server systems is the design of distribution
architectures. The objective of distribution design is to decide how an application and its
data should best be divided. This process will provide the best starting point along logical
lines. In order to optimize performance, individual processes must be examined during
implementation and be individually “tuned.” Tuning is the process of identifying individual
processes and determining where that processing should be conducted to maximize

performance.

a) Planning Matrices

The first step in distribution design is to determine which entities require specific

24

functions. This process is most easily accomplished by creating an entity versus function
matrix. This matrix displays along the y-axis the functions determined from the previous
phase and across the x-axis the entities identified for the system. This provides a visual

representation of the logical groupings of functionality.
b) Distribution Design

(1) Conduct Traffic Analysis

Traffic analysis is concerned with identifying the traffic patterns of information
flow throughout the process. Unlike work flow analysis, which represents the process of
routing and approval that transactions follow in the system, this form of traffic analysis
identifies bandwidth requirements for communications links in the system. The focus of
traffic analysis is the identification of high volume nodes in the system where substantial
communications investment will result in the greatest performance gains.

In implementing the messaging required to automate electronic routing, an
examination of the process itself should be conducted. This, however, enters the realm of

business process reengineering, which is beyond the scope of this thesis.

(2) Model the client

Developing the model for the client involves determining what data and what
functionality logically should be placed on the client. This can be accomplished by
inspecting the process/entity cross-tabs and grouping functionality and data that
correspond to the same entities.

In some organizations this may be particularly difficult due to political concerns
surrounding ownership of data and hardware. This is an area where the support of upper-
level management is very important. Senior management would be very effective in
breaking down these unnecessary political barriers that can prevent efficient utilization of

resources.

(3) Model the server

To correctly model the server several issues must be addressed. These issues

include performance, security, and mission criticality.

(a) Performance and Replication

Replication is the process of maintaining identical copies, or mirrors, of databases
in multiple locations. Traditionally, replication is considered undesirable due to the
difficulty it introduces in keeping all copies of the data synchronized. It may be desirable,
however, to accept this additional complexity in favor of the higher performance that

replication sometimes offers.

(b) Security

While it is desired to maintain a seamless connection between a client and a server,
security concerns will mandate that the user verify their identity through use of a
password. When numerous servers are part of the system, the problem of security can
become quite complex. Typically each server will maintain its own security system. Each
data source may require its own password. To prevent bombarding the user with
numerous logon requests, the application may be responsible for negotiating connections
and managing numerous system access requirements. For example, a sales application may
access a sales database that maintains clients and a warehouse database that maintains
orders and invoices. These databases may be located across the country and require
separate security access controls. The application should take care of maintaining the

access information for these databases so that the user need provide a password only once.

(c) Mission criticality
If a system can continue to provide its fundamental purpose without a particular
process then the process is probably not mission-critical. If a mission-critical process can
be identified, then measures to protect that process should be defined. These measures
may involve redundant communications lines, contingency power sources, and in extreme

cases complete duplicate servers that provide redundant protection from failure.

26

(4) Develop functional partitions

Because client/server systems are unique, there are a number of possibilities for
sharing functionality between the client and server. Partitioning is the act of allocating the
activities of the system between the client and the server. Several rules of thumb may be

useful in determining this allocation:

Locate the functionality as close as possible to the source of that
functions input and the target of that function’s output. Where source
and target are at different locations, consider decomposing the
functionality further.
Locate the functionality on the platform that provides the most
appropriate resources for the support of that functionality.
Locate the functionality where it will act to conserve resource in the
following priority: .

— Conserve shared server resources.

— Conserve shared network bandwidth

— Conserve client resources.[Ref. 6]

(5) Develop repository partitions

Data partitioning is similar in execution to application partitioning. Logically

related data may be segregated over a wide geographic region for a number of reasons.

Some of the factors that justify the segregation include processing capacity,

communications bandwidths, availability, organizational structure, and the combination of

heterogeneous data sources.

Conversely, there are many factors that argue against the distribution of data.

Some of these factors include:

Location transparency for application access.

Performance for distributed queries over wide area networks and
relatively slow transmission lines.

Fully distributed security that encompasses all servers that may provide
residence to one or more “chunks” of distributed data.

Full transaction management, distributed update commit protocols for
failure detection and backout, and distributed concurrency control.
Allowance for failures of localized resources.

Organizational ownership of distributed data.[Ref. 6]

27

C. MIDDLEWARE DEVELOPMENT

Connectivity allows applications to transparently communicate with other
programs or processes, regardless of their location. The key element of connectivity is the
network operating system (NOS). NOS provides services such as routing, distribution,
messaging, file and print serving, and network management services. The protocols are
divided into three groups: media, transport and client/server protocols. Media protocols
determine the type of physical connections used on a network. Types of physical
connections include Ethernet, Token Ring, Fiber Distributed Data Interface, and
Asynchronous Transfer Mode. A transport protocol provides the mechanism to move
packets of data from client to server. Once the physical connection has been established
and transport protocols chosen, a client/server protocol is required before the user can
access the network services. A client/server protocol dictates the manner in which clients
request information and services from a server and also how the server replies to that
request. [Ref. 7] ‘

In order to develop system knowledge to an appropriate level to make these
decisions, it is necessary to examine the communications plan for the system. This is
treated as an independent effort in this methodology because, in a new implementation, the

application and data partitions drive the communications requirements.

1. Network Analysis
Depending on the type of migration taking place, a substantial investment in
networking infrastructure may be required. In determining the type of network required, it
is necessary to determine the area of responsibility and the type of connectivity that the

system will require.

a) Determine the Area of Responsibility
Area of responsibility refers to the geographic distance to be spanned by the
system. In the case of a departmental system, a single local area network may fulfill the

requirement. On the other hand, a university campus, or a single site corporation, could

28

require segmented LANSs utilizing routers. An enterprise wide/global system will require
the use of inter-networks and wide area networks. In addition to the physical connectivity,
logical connections must be organized in such a way as to optimize performance. For
example, a manufacturing company may be physically organized along product lines, but

for optimum network performance departmental databases may be desired.

b) Determine System Connectivity

When establishing the overall view of networks for the system, it is necessary to
determine how portions of the systems should be connected. There are essentially three
types of connectivity options that involve different levels of timeliness. While it is usually
thought that real-time updates are best for all parts of the system, this may not indeed be
true. Costs of batch transactions may be 10% of real-time systems. Limited resources will
dictate that some type of hierarchy be established. Data needs to be timely to the extent of
the context in which it is viewed. Having up-to-the-second data in the database is of little
use if that data is only used to compile a quarterly, weekly, or even daily report.[Ref. 4]

For example, while one would certainly want real-time access to information
concerning transactions in progress, updating sales figures in real-time might cause
decision support systems based on them to be too volatile. To establish what aspects of
the system should take processed in real-time, it is necessary to examine the criticality, the

timeliness, and the level of security of each transaction.

2. Network Design
The system is now ready to be broken into the physical locations that will house
the data and the functionality. These locations were identified logically in the partitioning

design phase by cross referencing the entities to the functions they perform.

a) Identify repositories
The combination of server models, data partitions, and traffic/workflow analysis
help identify the location of data repositories. Repositories are logical locations to place

the physical databases. By identifying the physical locations that house the data and

functionality, it becomes obvious which locations must be connected.

b) Determine bandwidth requirements
Bandwidth requirements are directly related to the volume of traffic expected both
between clients and servers and between multiple servers. Bandwidth refers to the amount
of data that can be moved thorough a communications channel in a given amount of time.
Typical bandwidth measurements are thousands and millions of bits per second

(kbps/Mbps).

¢) Identify replication candidates
Data repositories that should be replicated will not be immediately apparent. It is
not uncommon for replication to occur in the second or third wave of optimization. As
stated before, replication should be a last resort for optimization. The difficulty involved in
maintaining accurate copies of multiple databases far outweighs most of the performance

benefits.

3. Network Installation/Improvement

~ Network installation and improvement may require significant construction to
existing physical facilities, depending on the degree of installation being considered. If
possible, the computer network infrastructure should be planned when a building is
constructed. Installation of network cabling and hardware can be very costly and intrusive

when conducted after a building is completed.

D. SYSTEM IMPLEMENTATION
The implementation of the system is the first part of the process that provides the
client with something tangible that they can respond to. The development and use of
Rapid Application Development techniques is key to keeping the client involved in the
process. Under traditional methodologies it was not uncommon to analyze and design a
system and deliver the finished product two or three years later. It is obvious that in
rapidly shifting business environments, this is an unacceptable turn-around. The

implementation proposed here focuses on RAD, automated database development and

30

modern communication networks to quickly provide the client with an acceptable solution.

1. RAD Cycle

Rapid Application Development, or RAD, is quickly becoming the most popular
method for delivering client/server applications. The reason for this popularity is that RAD
focuses on delivering quality software as quickly as possible. Contrary to the traditional
waterfall model, which depicts software development as a sequential series of processes,
RAD views development as an iterative process. Prototyping, testing, review, and
improvement are repeated frequently throughout the development process. RAD focuses
on developing software incrementally. Fred Brooks, in the classic Mythical Man Month,
recommends “...build one to throw away.” [Ref. 8] In RAD, the application is built many

times, continually improving on what has already been built.

a) Prototype

The prototype is central in the rapid development of applications. The process of
prototyping involves developers and end users working closer than previous approaches
suggest. Developers gain a sense of reality and urgency from working with end users, and
user requests are easily conveyed to the developers because of the absence of multiple
layers of administrative overhead.

Prototyping focuses on delivering working applications, or application parts,
quickly so that ideas and conceptual issues can be discussed early in the development
process. Event driven programming and the graphical user interface promote the
prototyping approach, by allowing developers to quickly generate applications that the

user can interact with and provide useful feedback.

(1) Event model
Traditional PC-based applications are based on a sequential model where the basic
Sflow of the application is decided by the application developer at design time. Modern
operating systems allow the use of multitasking and windowing environments to provide

the user with the luxury of controlling the execution of the application at run time. This

31

ability is referred to as the event model. In an event driven application, the user decides
what will take place and when it will occur. Some structure, of course, still exists, but the

processing of the application is based on responding to different user-initiated events.

(2) Graphical user interface
Graphical user interfaces, or GUTs, allow users to interact with a computer in a
more intuitive way. A GUI consists of standard visual components like buttons, drop-
down lists, radio buttons, and check boxes that provide a consistent visual representation
of the application. GUIs help make using application programs appear as a natural

extension of the way an individual works.

(3) Implementation tool
There are numerous tools available to improve the process of prototyping
applications. These products range from screen painters that present static images which
will later be translated into operational code, to application generators that eliminate the
need for the developer to write the code for the user interface. Powerful application
generators have recently appeared on the market that allow the developer to interactively

manipulate the GUI elements and have the code modified in real time.

b) Test
Testing occurs frequently and interactively in RAD. Because development occurs
in such rapid succession, the ability to frequently and interactively test the application is
extremely important. Modern tools typically provide a run operation that allow the
developer to try ideas interactively, eliminating the high cost of long time periods typically

associated with assembling an application.

¢) Review
Review provides application developers with the input they need to develop
intuitive applications that respond to the needs of their users. Review should be frequent
and involve developers as well as end users. This type of review provides users and

developers with feedback throughout the development process so no surprises occur when

32

the system is delivered.

During the review process, an application developer should describe the function
and structure of the code that has been developed. It is often most advantageous to have a
developer perform the presentation who did not actually develop the code being described.
This approach would inspire developers to write code that is easier to understand and

explain.

d) Improve

Continuous improvement is a philosophy that has not always been a part of
traditional development approaches. Using RAD, developers are more involved with the
design of applications, and are therefore more likely to build in quality. Knowing that the
code they are developing will be revisited, in.spires more intelligible comments and better
design. Most information systems organizations are trying to be more proactive in their
strategic planning. “Because IS [departments are] less likely to be mired under an
incredible backlog of change requests (end users will be able to do a lot more on their
own) and because staffs are likely to know more about the company’s business, IS

[departments] can actually anticipate user’s requests.” [Ref. 1]

2. Database Implementation
If a procedural approach has been followed in designing the database, the
transition from logical schema to physical tables is a simple one. If utilizing an automated
tool, the transition may be even simpler. Typically automated tools will generate tables,
primary, secondary and foreign keys, and provide referential integrity. Different tools
implement this functionality differently. Some generate an SQL scrip/ that can then be
loaded into a database management system and compiled to produce the physical

implementation. Other tools will actually imbed this function in the product itself and

generate the tables automatically.

E. SYSTEM MAINTENANCE AND EVOLUTION

1. Application Maintenance
Because an application developed with rapid application development techniques is
in a continual state of improvement, the actual maintenance phase is more difficult to
define. One could argue that application maintenance begins once the initial working
prototype has been delivered. Alternately, because an application developed using RAD
techniques continually “evolves,” one could argue that application maintenance never

actually begins.

2. Data Maintenance
Most data maintenance tasks have been automated by utilities that ease the
workload of a database administrator. Even so, an individual within the organization
should be appointed to act as the database administrator to manage user access and system
configuration. This individual will be responsible for maintaining user rights and
controlling the access permissions for certain groups of users. Depending on the size of
the system, this duty may be a part-time/collateral duty. In larger systems a full-time

position should be considered.

3. Communications System Maintenance

Communications system maintenance covers a broad area of responsibility and
involves a number of potential parties. Wide area network maintenance and improvement
will almost always be the concern of the service provider. Local area network maintenance
may be a task handled internally or may be outsourced depending on the level of control
desired.

In this chapter we have examined a modern methodology for analyzing, designing,
developing, and evolving client/server applications. Chapter IV discusses the analysis,
design, and implementation of a practical application based on the methodology presented

in this chapter.

IV. HUMAN RESOURCES OFFICE - A CASE STUDY

A. INTRODUCTION

The Human Resources Office (HRO) of the Naval Postgraduate School (NPS)
maintains data on all civilian personnel employed at NPS in accordance with regulations
defined by the Office of Personnel Management (OPM). Primarily HRO is interested in
maintaining all information about past and present civilian employees. This includes, but is
not limited to, personal information, job history information, and payroll information. The
information maintained by HRO is considered sensitive since it contains private, personal,
and pay and earnings information. In addition to maintaining information on all civilian
employees at NPS, HRO is also responsible for maintaining information for every position
at NPS whether vacant or filled.

As with most personnel systems, automated or manual, the vast majority of data in
the system pertains to individuals data. In order to ensure that all concerned parties have
access to the data, a system which provides a central repository for all civilian personnel
information is maintained by the Department of Defense. The information in this system

relates directly to other systems, specifically, pay and retirement systems.

B. DEFENSE CIVILIAN PERSONNEL DATA SYSTEM (DCPDS)

The Defense Civilian Personnel Data System (DCPDS) is the system currently
employed by HRO for the maintenance of information about personnel and positions at
NPS. The DCPDS has been in existence since 1982 and has been used to provide an

automated system for the storage, transaction management, and retrieval of personnel

actions and data.

1. Components

The DCPDS, is a nationwide, mainframe based, information system located in San
Antonio, Texas. The system is implemented on a Unisys OS 1100, a multi-user, multi-
processor time-sharing mainframe system.

Interaction with the computer system is accomplished via dumb terminals or
personal computers running terminal emulation software that are connected via leased
telephone lines to the central processor in Austin, Texas.

DCPDS is a data management application written in COBOL, a third generation
computer language which stores its data in flat files. As such, it suffers from the problems
associated with file processing systems. These problems include data duplication,

application program dependency, and difficulty of representing the users view of data.
2. Functionality

DCPDS was designed to improve the accuracy and response time of civilian
personnel information required for personnel management at activity and headquarters
levels. It was also designed to provide a uniform system for civilian personnel systems
DoD-wide.

DCPDS eliminates some, and reduces other, activity level clerical routines. It
provides immediate access for civilian personnel data update and inquiry, documents
personnel actions, and maintains historical data that is used for planning, analysis, and
reporting.

Users interact with the system via a scripting language that was developed as a
paﬁ of the DCPDS application. This scripting language makes use of key/command words
and data identification numbers. Data identification numbers, or DINs, are alphanumeric
designation which describe the data and indicate where it is stored in the DCPDS. Figure 4

shows the overall architecture of the system.

36

DCPDS

San Antonio

1 o

Mainframe

i

— | = —_—

| — i ——= ILH W =) =R

NPS HRO NPS HRO NPS HRO NPS HRO NPS HRO NPS HRO

= F B e 0)

NPS HRO NPS HRO NPS HRO NPS HRO NPS HRO NPS HRO

Figure 4: Defense Civilian Personnel Data System

3. Limitations

As indicated earlier, most COBOL systems maintain data in flat files. A flat file
maintainska single record for each entity in the system. One of the obvious limitations of
this type of data store is that it is necessary to know in advance how many occurrences
there will be of each data element. For example, in Table 1 we can observe that there are
five occurrences of award dates. What would occur if Mr. Willis were to receive an
additional award. In addition, as is obvious from the table, Mr. Willis is the only individual
with more than one award. Regardless of that fact, we must reserve room in the data store
for all awards that any employee might receive. This is clearly an inefficient use of

secondary storage.

37

Name SSN Position Award Award Award Award Award
#1 #2 #3 #4 #5
Willis | 123456789 | Builder | 2/1/69 | 6/5/71 | 4/2/75 | 1/9/86 | 9/4/93
Cruz 234567890 Fireman 5/7/94
Pitt 345678901 | Security | 4/8/90
Hanks 456789012 Teacher
Table 1
An Example Flat File

In the early 1970’s a researcher with IBM named E.F. Codd developed the Relational
Database Model [Ref. 8] The relational model overcame many of the limitations of flat file
systems. Relational models normalize the data by breaking it into several files (tables) in
order to eliminate redundant data and isolate repeating groups of data. This results in
multiple tables which can be related to each other through common data elements.
Returning to our example; a relational representation might look like Tables 2a and 2b.
Even in this oversimplified example, it is clear that Table 1 requires 32 fields, or cells, and

that the combined storage of Tables 2a and 2b are only 26 fields.

Name SSN Position

Willis 123456789 Builder

Cruz 234567890 Fireman

Pitt 345678901 Security

Hanks 456789012 Teacher
Table 2a

Example Employee Table

‘,,llll,,

38

SSN Award Date
123456789 2/1/69
123456789 6/5/71
123456789 4/2/75
123456789 1/9/86
123456789 9/4/93
234567890 5/7/94
345678901 4/8/90

Table 2b

Example Employee Award Table

A second drawback of using the DCPDS is the communications overhead. Since
the DCPDS relies on dumb terminals that are connected to it directly, a communications
line must be kept open for each individual user, and the number of users is limited by the
number of available connections, currently 12 for NPS.

Additionally, DCPDS utilizes its own command code language for.interaction with the
system. This code is a cryptic set of commands and data identifiers that outline the
possible personnel actions and requests for information, referred to as desires. Because of
the level of training necessary to utilize the capabilities of DCPDS, the only personnel who
could interact with the system are trained personnel specialists.

Personnel actions are generated throughout the command on standard DoD form
SF-52. These forms are routed by hand for approval before being routed to the HRO. In
the HRO the forms are processed by teams of three individuals who convert the
information into DCPDS code and enter that code into DCPDS. This entire process is
manpower intensive and can result in significant delays, and mishandled pqrsonnel actions.

Because the information contained in DCPDS is difficult to withdraw and few
organizations within the command are aware of its existence, the information is under-
utilized. Departments who are forced to provide input to this system are unable to receive
information back from the system. To compensate for the perceived void of information,
systems have been devised within organizations at thé command that duplicate data
already contained in DCPDS. These systems were devised to provide a service for which a
demand exists, and validate the premise that users will put this type of information to use

if it were available.

PERS RECD CA CCPO QH STATUS 16.

FM AREAl TO BE 1:36:X NM1 TO BE 1:18:X DP1 TO 19:8:X TPl TO BE
27:10:X CM1 TO BE 27:3:X AV1 TI BE 30:3:X EX1 TO BE 33:4:X

COPY ORG-CD2*26

DC AA TO BE IF BBA<1X26#> WITHIN "A" THRU "G".

DC BB TO BE IF BBA<1X26#> WITHIN "H" THRU "O".

DC CX TO BE IF BBA<1X26#> WITHIN "P" THRU "2Z".

Figure 5 : Example DCPDS Script

39

Because of deficiencies previously mentioned, some personnel offices resorted to
developing their own micro-computer based systems for local use. One such system that
has subsequently been developed for widespread distribution and use is the Electronic

System For Personnel.

C. ELECTRONIC SYSTEM FOR PERSONNEL (ESP)

The Electronic System For Personnel, or ESP, grew out of an individual activity’s
frustration for working with DCPDS. The system is centered around IBM-PC compatible
micro-computers that have become more prevalent. ESP automates the generation of
personnel actions. In contrast to DCPDS which automates the processing of personnel
actions, ESP is focused on automating the entire process, from initial draft of the
personnel action, through approval and processing, and into DCPDS. In addition, ESP
provides some limited local reporting capability and minimal local control of data. ESP is
written in Microsoft Fox-Pro for MS-DOS, a popular database package based on the
dBase family originally developed by Ashton-Tate Corporation.

The user interface for ESP is a based on procedural menus and forms that mimic
the structure and content of the SF-52. This paradigm smoothes the transition from paper
based forms to electronic forms and provides a consistent fee/ for users who have been
accustomed to using a paper driven system. These menus walk the user through a pre-
planned series of steps requiring information in specific order to process requests and
transactions.

As previously stated, ESP automates the generation and routing of SF-52’s and
acts as a front end for DCPDS. Instead of filling out an SF-52 manually, ESP allows'
offices throughout the command to generate electronic SF-52’s which are then routed for
approval via a computer network. The approved personnel actions are then routed to the
HRO for review and quality control before being uploaded to the DCPDS. The goal of the
ESP is the paperless personnel office. While ESP goes a long way to improving the paper

driven, centrally controlled interface previously utilized by DCPDS, it neglects several key

40

issues of functionality.

While procedural menus and electronic SF-52’s are far superior to the command
line language required by DCPDS, they offer little adaptability and are less useable than
the event driven system most computer users have come to expect from modern

applications such as those developed for use with Microsoft Windows.

¢

'% CEICECE e = LB

EE Dept Office Comptraller

Figure 6 : Electronic System for Personnel

ESP does maintain some of the data it uses in a set of local database tables, but
these tables are used mainly for help screens and system tables. One of the tables ESP
does maintain is a subset of the DCPDS table 2. Table 2 maintains the master list of all
data identification numbers and the system information about them. ESP relies on a subset
of table 2 that ships with the ESP application. When updates occur to table 2, which can
be as frequent as quarterly, ESP must be modified and redistributed. Unacceptable system
downtimes are a direct result of this dependency.

There is little in the way of reporting that ESP can perform on its own. For most

reporting information, the personnel specialist must revert to DCPDS language scripts.

41

Neither ESP nor DCPDS offer any ability to generate summary reports. All summary
reports must be compiled by hand.

Because ESP functions, essentially, as a front end to DCPDS it maintains many of
the requirements and limitations that are inherent in DCPDS. This means that the number
of concurrent links to DCPDS is still limited to twelve. While many more users can
generate personnel actions, desires and reports can only be entered in the system via the

twelve systems connected directly to DCPDS.

D. CLIENT/SERVER PROVIDES THE ANSWER

ESP goes a long way to improving the automation of personnel systems for DoD.
There are, however, many features that a modern system could provide that would aide
usability and improve functionality.

Because such a large investment already exists in the central DCPDS system, it is
undesirable, if not impossible, to change that system in the short term. The solution
proposed here alleviates demand on that system, provides users with a user friendly

intuitive system, with the power to create information quickly and easily.

1. Desired Traits of a Proposed Solution

The central DCPDS mainframe computer maintains connections with numerous
other systems to maintain current information for such systems as payroll and retirement.
In order to preserve the overall system and the complex interfaces it maintains with these
other higher level systems, it is desirable, if not mandatory, that the appearance of the
system from the DCPDS side remain unchanged. |

The system must be user friendly, allowing people with little or no training to
utilize the system for data input and information retrieval. In the past users have used
paper forms and electronic forms that mimic those paper forms. This system must provide
a paradigm for these users that is at least as easy to understand. Ideally, the user interface

should allow the user to customize the interface to his or her personal preferences, while

maintaining some overall application structure.

The most glaring deficiency in both DCDPS and ESP is the lack of reporting
capability. While the automation of personnel action generation and processing is highly
desirable, the advantage to having an automated system is that it permits management to
draw information from the data that it collects. While detail reports fill a necessary
requirement, the true power of an information system is its ability to display summary data
that management can use to identify trends and potential problems. Because DCPDS and
ESP have both proven to be weak in this area, it is an area that has received particular
empbhasis in this application.

DCPDS is a central system. The managing agency in San Antonio decides when
the system is available and how the system can be loaded. Because of differences in time
zones and other factors, the system may be highly loaded before the local office can even
connect to the system. This can introduce long, variable delays that prevent the utilization
of the central system. The solution is to allow the local office to have full control over
their data. The local office is held accountable for the data in accordance with regulations.
Since the local office is accountable for the data, they should be allowed to have full

control of it.

2. Impetus for Change

Recognizing some of these deficiencies and in an effort to increase customer
satisfaction and reduce costs, a dialog was initiated between the director of the Human
Resources Office (HRO), Ms. Mary Aguilar, and Dr. James Emery of the Systems
Management department. As a process of continuous improvement, Ms. Aguilar has
envisioned providing NPS and possibly other DoD commands with a system which

facilitates rapid access to information, real time manipulation of data, and flexible report

generation, all at a cost savings to the government.

3. Human Resources System - The Proposal

The solution envisioned for this system is unique in that it maintains the central database
with absolutely no modification to that system. What is proposed is a client/server system
maintained locally that will retrieve, on a periodic basis, a snapshot of the data that
pertains to the command. Initially, this snapshot would occur on a frequent basis (perhaps
as often as once per day) to ensure quality. After the system is fully tested and confidence

established in the system, the snapshot can be scheduled less frequently. The data snapshot

= %

Local Dept Offices

HRS
Monterey
(Oracie)

Local Dept Offices

=i

Local Dept Offices

-3

%

A

ol

|
ll |
I

(TCPA
s
L

ey

Local Dept Offices

[T = -
—
Local Dept Offices

=i

tocal Dept Offices

DCPDS
San Antanio

2=
aS=

Infrequent Data Downioad |

HR!
Monterey

%]

DCPDS Mainframe

Gampus Backb:

= %l

Local Dept Offices

) %5“1

Local Dept Offices

Local Dept Offices

Loca! Dept Offices

Local Dept Offices

Figure 7 : Human Resources System, A Client/Server Solution.

44

is automatically converted from the flat text files, received from the DCPDS, to relational
tables maintained on a local SQL relational database server. Once the data is accessible on
the local server, transactions can be executed and reports generated locally. Figure 7

shows the overall architecture of this proposal.

a) Functionality

The transactions that take place during the day are logged, executed against the
local data in real time, and converted to an equivalent DCPDS transaction. These DCPDS
transactions are stored locally until approximately one hour prior to the time DCPDS goes
off line for the day. In a single communication transaction the entire day’s transactions are
uploaded to the DCPDS where they will be processed in batch fashion while the DCPDS
is off-line.

HRS, like the ESP, relies on the DCPDS table 2 for mapping data elements in
DCPDS to the local system. Unlike ESP, HRS is capable of automatically recognizing that
modifications to DCPDS have occurred. HRS will immediately request an updated copy
of table 2 from the DCPDS. The system administrator at the command level can then
determine the appropriate mapping for any new data elements, remove data elements that
are no longer used, or modify data elements that have changed. This feature improves
system availability and provides the system administrator with the power to customize the
locél system.

b) Development Tools

The user interface for this application has been designed for Microsoft Windows
based IBM compatible personal computers. The application itself was constructed utilizing
a new and very powerful Rapid Application Development tool from Borland International,
named Delphi. It provides a unique set of powerful tools and a liberal distribution license
for any applications developed using it.

Delphi incorporates a combination of features that make developing applications

with a RAD philosophy easier and more predictable. The Delphi environment boasts an

with a RAD philosophy easier and more predictable. The Delphi environment boasts an
object oriented language, a native optimizing code compiler, intuitive visual tools, and
sophisticated database tools.

Object Pascal provides the core technology for the Delphi environment. The
compiler that Delphi uses is a mature product that has been utilized extensively in industry
over the last 10 years. Delphi compiles at a rate of over 300,000 lines of code per minute
on an Intel ™ Pentium ™ based personal computer. Object Pascal is an object oriented
language that aggressively promotes code reuse through the use of visual components that
encapsulate standardized functionality. The functionality may be extended either by
inheriting new objects from those existing or by writing event handlers to respond to
certain events that the object may experience.

Delphi’s visual tools reduce the generation of the user interface to a simplistic task.
This allows the software developer to quickly develop the user interface and move on to
the generation of the actual application logic.

Packaged with the client/server version of Delphi are several tools that simplify the
process of utilizing remote database servers. SQL Links provide seamless integration of
data from Oracle, Sybase, SQL Server, and Interbase. This middleware product is
provided and may be redistributed with any application developed with Delphi completely
free of royalties. Additionally, the Visual Query Builder and ReportSmith are included to

ease the task of developing SQL queries and generating complex reports.

c¢) Costs and Benefits

As with any system, there are costs and benefits associated with an
implementation. These must be carefully weighed to determine if the benefits are worth
the costs and that the risks are low enough to make the implementation successful.

The most obvious benefit of the system proposed is the additional functionality and
ease of use that can be derived from the system. Higher productivity will translate to

savings in personnel budgets, either from lower rates of attrition or from decreases in

46

telephone lines on-line for ten hours per day five days a week or approximately 144

communication hours. The solution proposed here would require a single line for less than

one-half hour each day or one-half of one communication hour. Communications charges

are essentially eliminated.

The cost of developing the application software is significantly less than that

‘ experienced in a system such as ESP. Conservative estimates suggest a full time equivalent
manning level of eight developers working on ESP over a period of four years. This
represents an investment of 32 person years. Generous estimates for HRS indicate total
development costs of two developers for six months or | person year. This represents a

significant savings just in development personnel costs.

4 T ESP

s1+4 |[HRS

1 2 3 4

Years

Figure 8
Comparison of ESP & HRS Development Costs in Person Years

Because applications developed with Borland Delphi can be distributed completely
free of royalties, there would be no additional cost incurred for application software. The
only other significant cost would be that of an SQL server for each command that chooses

to implement the system. Were a compatible SQL server already available at the

only other significant cost would be that of an SQL server for each command that chooses
to implement the system. Were a compatible SQL server already available at the
command, this cost could be forgone.

HRS provides an excellent model for providing a bridge from traditional DoD
legacy systems to modern client/server systems. It does so without requiring changes to
large central systems with complex interfaces. Additionally, it maintains an existing
investment in infrastructure until such time as those entire central systems can be
modernized.

This chapter has described the implementation of a client/server architecture to a
DoD legacy system. The solution set is unique because it maintains the legacy mainframe
system to provide stable connectivity with other DoD systems. The application described
provides a model for the migration of DoD legacy systems to client/server architectures.
Chapter V discusses the findings generated by this thesis and the recommendations for
future research that will further foster the use of client/server architectures and RAD

techniques for DoD.

48

V. LESSONS LEARNED AND FURTHER RESEARCH

This chapter concludes the thesis by presenting the lessons learned during the
course of developing the thesis and the associated application. The chapter also presents

directions for future research.

A. LESSONS LEARNED

1. Small to medium sized system development is well suited for RAD
methodology

The most significant lesson learned is that formal, structured methodologies can
detract from the accomplishment of productive work for small to medium size systems. A
rapid application development methodology based on data modeling and prototyping
seems to be a more appropriate approach for developing such systems. The iterative
process of a RAD methodology and its user orientation result in systems that meet user
requirements and are more likely to be accepted and adopted by users. It is still expected

that an application of significant complexity would require a formal methodology.

2. Modern application development tools greatly enhance the development
process.

The new generation of application development tools based on event-driven,
object oriented, visual components and advanced compiler technology greatly enhances
the productivity for developing applications. They are also well suited for the RAD

philosophy, since changes can be incorporated easily.

3. Upper level management and end-user support and enthusiasm are
indispensable for the success of application development projects

The support and enthusiasm of management and end-users proved to be a key

factor in the success of this application. Continual interest by management in this project

provided focus and helped overcome any obstacles to its completion. It is hard to imagine
undertaking big application development projects without the full support of top

management and the involvement of end-users.

4. Data is the key for the success of any system

With modern application development tools, implementing required functionality is
becoming a relatively easy task as long as the data it requires is available. An advantage of
client/server technology is its ability to access data where it resides, regardless of the
platform type on which it resides. The ability to identify data requirements and locations is,

therefore, a crucial requirement for the success of any system.

5. Complex applications would most likely benefit from a conceptual database
modeling tool.

When developing small or medium size applications a conceptual data model may
be considered optional. It is very likely that conceptual data modeling should be
considered mandatory for complex systems. The complexity of the system will necessitate
the capture of data requirements separate from implementation details. This activity will
require the use of an automated tool to develop the conceptual model and possibly
generate the implementation database schema. Candidate conceptual data model include
the Entity Relationship Model, IDEF1X, and Object Oriented Data Modeling. In
developing the application of this thesis, a conceptual modeling tool was employed in the

early stages of database design, but proved useless for such a simplistic data model.

6. Communications interfaces are the most difficult to implement.

By far, the most difficult aspect of developing this application was the
identification and analysis of the data communications requirements. The mainframe
system that runs DCPDS utilizes an obscure communications protocol which posed many
difficulties in the implementation of the update mechanism. It is suspected that

connectivity and data communications issues between clients and servers through

50

middleware will also be a difficult aspect of client/server development.

7. Client/server technology allows the peaceful coexistence of modern and
legacy systems

Because of the separation of application environments from accessed data inherent
in client/server approaches, sophisticated client applications can be built with modern tools
and yet be able to access legacy data. These systems can provide capabilities that can not
possibly be obtained from legacy systems and at a fraction of the cost and time required to

develop their predecessors.

8. Providing unfulfilled functionality increases acceptance of the system

By placing emphasis on services not previously provided, user acceptance and
support can be maintained at a high level. This approach allows the introduction of new
technology with less resistance. Once the user is accustomed to the newly introduced

technology, additional functionality may be incorporated.

B. FUTURE WORK

The following are enhancements to the developed system:

1. Functional enhancements

a) Updates

Because ESP was already in the process of being implemented throughout the
command, a decision was made that shifted the focus of HRS away from the initial design.
Instead of immediately attempting to alter the automated routing of personnel actions, the
focus was shifted to providing reporting capabilities absent from both ESP and DCPDS.
For this reason, work on the data editor form and its associated functional code was halted
to provide adequate time to complete the reporting capabilities of the system.

b) Electronic Messaging and Routing

Because the focus of HRS was directed away from the automation of personnel

actions, the electronic messaging and routing module of the application was not
developed. It is necessary to develop this capability if HRS is to eventually replace ESP.
¢) Data Communications Protocols
The data communications protocols that would allow direct connection to the
mainframe in San Antonio could not be procured and implemented in the time allotted for
this research. In order to provide a seamless integration of HRS with DCPDS, this

functionality must be added to the system.

2. User Interface Enhancements

Throughout the on-going development of this system, the user interface should be
continuously revisited to ensure suitability to task. Every effort should be made to enable
the user to modify the interface to best accommodate individual work preferences. It is
worth noting that developers utilizing RAD tools such as Borland Delphi are much more
conscious of interface concerns because they must continuously view and manipulate the

interface itself, not a computer code representation of the interface.

3. Performance Issues

When the system is migrated to its eventual implementation on an Oracle database
server and placed in operation, procedures that consume excess network bandwidth or
client resources should be identified for possible implementation as stored procedures or
triggers. As experience with the system grows, the most common sorting patterns for data
will become familiar to the developers. At'such time, indices should be created to enhance

responsiveness and increase overall system performance.

52

APPENDIX. HRS APPLICATION FORMS AND SOURCE CODE

NPS Human Resources Automation System
File Data Reporting Help

File Name: UHRODEMO .PAS

unit Uhrodemo;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Buttons, Menus, ExtCtrls, UBrowse, UTestOne,
UDesires, UAbout, UEditor, Report;

type
TForml = class(TForm)

Panell: TPanel;
MainMenul: TMainMenu;
Filel: TMenultem;
Exitl: TMenultem;
Nl: TMenultem;
PrintSetupl: TMenultem;
Helpl: TMenultem;
Aboutl: TMenultem;
HowtoUseHelpl: TMenultem;
SearchforHelpOnl: TMenultem;
Contentsl: TMenultem;
Datal: TMenultem;
btnCurrent: TSpeedButton;
btnHistory: TSpeedButton;
btnExit: TSpeedButton;
btnReports: TSpeedButton;
btnMaint: TSpeedButton;
btnDesires: TSpeedButton;
btnAdHoc: TSpeedButton;
Reportingl: TMenultem;
Reportl: TReport;
BrowseCurrentDatal: TMenultem;
BrowseHistoryDatal: TMenultem;
PreparedReportsl: TMenultem;
CreateNewReportsl: TMenultem;
PtrSetupDlg: TPrinterSetupDialog;
OpenDialogl: TOpenDialog;
SpeedButtonl: TSpeedButton;
procedure btnCurrentClick(Sender: TObject);
procedure btnExitClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure btnMaintClick(Sender: TObject);
procedure btnReportsClick(Sender: TObject);
procedure btnDesiresClick(Sender: TObject);
procedure btnAdHocClick(Sender: TObject);
procedure PrintSetuplClick(Sender: TObject);
procedure btnHistoryClick(Sender: TObject);
procedure AboutlClick(Sender: TObject);
procedure SpeedButtonlClick(Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Forml: TForml;
implementation
{$R *.DFM}

procedure TForml.btnCurrentClick(Sender: TObject);
begin

Form2.Show;
end;

procedure TForml.btnExitClick(Sender: TObject);
begin

Close;
end;

procedure TForml.FormClose(Sender: TObject; var Action: TCloseAction);
begin

Form2.Hide;

Form2.Free;
end;

procedure TForml.btnMaintClick(Sender: TObject);
begin

frmMaintenance.Show;
end;

procedure TForml.btnReportsClick(Sender: TObject);

begin
if OpenDialogl.Execute then
begin
Reportl.ReportDir := ExtractFilePath(OpenDialogl.Filename);
Reportl.ReportName := ExtractFileName(OpenDialogl.Filename);
Reportl.Run;
end;
end;

54

procedure TForml.btnDesiresClick(Sender: TObject);
begin

frmDesire.Show;
end;

procedure TForml.btnAdHocClick(Sender: TObject);

var
CmdStr : PChar;
begin
Forml.Cursor := crHourGlass;

|
| CmdStr := 'c:\rptsmith\rptsmith.exe';
if WinExec(CmdsStr,SW_SHOWNORMAL) < 32 then
MessageDlg((Could not execute Report Smith.'+Chr(13)+
An error has occurred'),mtError, {mbOk],0)
else
Forml.Cursor := crDefault;
end;
procedure TForml.PrintSetuplClick(Sender: TObject);
begin
PtrSetupDlg.Execute;
end;

procedure TForml.btnHistoryClick(Sender: TObject);
begin

MessageDlg('Feature Not Yet Implemented', mtInformation, [mbOK], 0);
end;

procedure TForml.AboutlClick(Sender: TObject);

var
frmAbout : TfrmAbout;
begin
frmAbout := TfrmAbout.Create(Self);
try
frmAbout.ShowModal;
finally

frmAbout.Hide;
frmAbout.Free;
end;
end;

procedure TForml.SpeedButtonlClick(Sender: TObject);
begin

frmEditor.Show;
end;

end.

S ————————
Browse Current Personnel Data
e Search By *
‘|Name

JStreét i {Cityf..,
3207 VISTA DEL CAMINO 'MARINA
CISTRILLIUMLANE - |SANCARLOS
“‘..'?50‘ FRIMONT STREE 0 PA

291 HILLCREST AVENUE
1840-5 CHEROKEE DRIVE

:P»ﬁbgAFmanddAﬁducmbnﬂﬂememe@j~u

File Name: UBROWSE .PAS

unit Ubrowse;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons, Wwkeycb, Grids, Wwdbigrd, Wwdbgrid,
DB, DBTables, Wwtable, Wwdatsrc, Tabs, wwdblook, ExtCtrls, Wwdotdot,
KingPop;

type

TForm2 = class(TForm)
wwDataSourcel: TwwDataSource;
wwTablel: TwwTable;
BitBtnl: TBitBtn;
TabSetl: TTabSet;
wwTable6: TwwTable;
wwDataSource6: TwwDataSource;
Notebookl: TNotebook;
wwDBGridl: TwwDBGrid;
wwDBLookupCombol: TwwDBLookupCombo;
wwlncrementalSearchl: TwwlncrementalSearch;
wwKeyCombol: TwwKeyCombo;
Label2: TLabel;
Labell: TLabel;
wwDBGrid2: TwwDBGrid;
wwDBLookupCombo2: TwwDBLookupCombo;
wwIncrementalSearch2: TwwlncrementalSearch;
wwKeyCombo2: TwwKeyCombo;
Label3: TLabel;
Label4: TLabel;
wwDBGrid3: TwwDBGrid;

56

wwDBLookupCombo3: TwwDBLookupCombo;
wwIncrementalSearch3: TwwIncrementalSearch;
wwKeyCombo3: TwwKeyCombo;

LabelS5: TLabel;

Label6: TLabel;

wwDBGrid4: TwwDBGrid;

wwDBLookupCombod4: TwwDBLookupCombo;
wwIncrementalSearchd4: TwwIncrementalSearch;
wwKeyCombo4: TwwKeyCombo;

Label7: TLabel;

Label8: TLabel;

wwDBGrid5: TwwDBGrid;

wwDBLookupCombo5: TwwDBLookupCombo;
wwlncrementalSearch5: TwwincrementalSearch;
wwKeyCombo5: TwwKeyCombo;

Label9: TLabel;

LabellO: TLabel;

wwTable2: TwwTable;

wwDataSource2: TwwDataSource;

wwTable3: TwwTable;

wwDataSource3: TwwDataSource;

wwTabled4: TwwTable;

wwDataSourced4: TwwDataSource;

wwTable5: TwwTable;

wwDataSource5: TwwDataSource;
wwTable4Language: TStringField;
wwTabled4LngProficiency: TStringField;
wwTable4dNAME_PERS: TStringField;
wwTabledBEST LANGUAGE_CIV: TStringField;
wwTable4dTOT_CR_HRS_ACAD: TSmallintField;
wwTabled4TYPE_CR_HRS_AGRGT: TSmallintField;
waable4EDUCATION_AREA_HIGH: TStringField;
wwTable4EDUC_LEVEL_CIV_ENTRY: TStringField;
wwDBLookupCombo6: TwwDBLookupCombo;
wwTable7: TwwTable;

wwTable8: TwwTable;

wwDataSource7: TwwDataSource;
wwDataSource8: TwwDataSource;
wwTable3NAME_PERS: TStringField;
wwTable3SSAN_EMPL_CON_NR: TStringField;
wwTable3DT_LATEST ENT PRES_GR: TStringField;
wwTable3DT_LAST_PROM: TStringField;
waable3DT_TEMP_PROM_EXPIR: TStringField;
wwTable3GR_CIV_PERM: TStringField;
wwTable3PAY PLAN_PERM: TStringField;
wwTable3COMP_LEV_PERM: TStringField;
waable3OCUPTNL_SRS_PERM: TStringField;
wwTable3STEP_IN_GRADE_CIV: TStringField;
wwTable3PAY RATE_DETERM: TStringField;
wwTable3DT_WGI_DUE: TStringField;
wwTable3FEGLI: TStringField;
wwTable3HEALTH PLANS: TStringField;
waable3HEALTH_ENRLM: TStringField;
wwTable3DT_ FEHB_EFF: TStringField;
wwTable3DT_TEMP_ELIG_FEHB: TStringField;

57

wwTable3DT_ LWOP_EXPIR: TStringField;
wwTable3DT_LWOP_SU_FUR_BEG: TStringField;
wwTable3BASIC_SALARY RATE: TIntegerField;
wwTable3LOC_ADJ: TIntegerField;
wwTable3ADJ_BASIC_PAY: TIntegerField;
wwTable3TOTAL_SALARY: TIntegerField;
wwTable3FROZEN_SERVICE: TSmallintField;
wwTable3PREV_RETIREMENT_COVG: TStringField;
wwTable3Rate2: TCurrencyField;
wwTable3Total2: TCurrencyField;
wwTable3Loc2: TCurrencyField;
KingPopupl: TKingPopup;
wwDBComboD1gl: TwwDBComboDlg;
wwTablelNAME PERS: TStringField;
wwTablelSSAN_EMPL_CON_NR: TStringField;
waablelLOCAL_ADDR_STREET: TStringField;
wwTablelLOCAL ADDR_CITY: TStringField;
wwTablelLOCAL_ADDR_STATE: TStringField;
wwTablelADRS _MAIL_ZIP: TStringField;
wwTablelHANDCP RPRTBL: TSmallintField;
wwTablelSEX: TStringField;
waablelRACE_NATIONAL_ORIGIN: TStringField;
wwTablelCITIZENSHIP: TSmallintField;
wwTablelFAM MBR_EMPL_PREF: TStringField;
wwTablelDOB: TStringField;
wwTablelCNTY WORLD_CIT: TStringField;
wwTablelRace2: TStringField;
wwTablelBirth2: TStringField;
wwDBLookupCombo7: TwwDBLookupCombo;
wwTable9: TwwTable;
wwDataSource9: TwwDataSource;
wwDBComboD1g2: TwwDBComboDlg;
wwDBComboD1g3: TwwDBComboDlg;
wwDBComboD1lg4: TwwDBComboDlg;
wwDBComboD1lg5: TwwDBComboDlg;
wwDBComboD1lg6: TwwDBComboDlg;
wwDBLookupCombo8: TwwDBLookupCombo;
wwDBLookupCombo9: TwwDBLookupCombo;
wwTablelO: TwwTable;
wwTablell: TwwTable;
wwTablel2: TwwTable;
procedure TabSetlClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure wwTabled4CalcFields(DataSet: TDataset);
procedure wwTable3CalcFields(DataSet: TDataset);
procedure wwDBComboDlglCustomDlg(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure TabSetlChange(Sender: TObject; NewTab: Integer;
var AllowChange: Boolean);

private

{ Private declarations }
public

{ Public declarations }
end;

var
Form2: TForm2;

implementation
{SR *.DFM}

procedure TForm2.TabSetlChange(Sender: TObject; NewTab: Integer;
var AllowChange: Boolean);
begin
case TabSetl.TabIndex of
0: begin
wwTable2.GotoCurrent (wwTablel);
wwTable3.GotoCurrent (wwTablel);
wwTabled .GotoCurrent (wwTablel);
wwTable5.GotoCurrent (wwTablel);
end;
1: begin
wwTablel.GotoCurrent (wwTable2);
wwTable3.GotoCurrent (wwTable2);
wwTable4.GotoCurrent (wwTable2);
wwTable5.GotoCurrent (wwTable2);
end;
2: begin
wwTablel.GotoCurrent (wwTable3);
wwTable2.GotoCurrent (wwTablel);
wwTabled.GotoCurrent (wwTable3);
wwTable5.GotoCurrent (wwTable3);
end;
3: begin
wwTablel.GotoCurrent (wwTabled);
wwTable2.GotoCurrent (wwTabled);
wwTable3.GotoCurrent (wwTabled);
wwTableb5.GotoCurrent (wwTabled);
end;
4: begin
wwTablel.GotoCurrent (wwTable5) ;
wwTable2.GotoCurrent (wwTable5);
wwTable3.GotoCurrent (wwTable$5);
wwTable4.GotoCurrent (wwTable5);
end;
end; {Case}
end;

procedure TForm2.TabSetlClick(Sender: TObject);
begin

Notebookl.PagelIndex := TabSetl.TablIndex;

end;

procedure TForm2.FormCreate(Sender: TObject);
begin
TabSetl.Tabs := Notebookl.Pages;

59

Notebookl.PagelIndex := TabSetl.TabIndex;
end; :

procedure TForm2.wwTabled4CalcFields(DataSet: TDataset);
var
S : String(6];
begin
§ := wwTabled4BEST_LANGUAGE_CIV.value;
wwTable4Language.Value := Copy(s,1,2);
wwTabled4dLngProficiency.Value := Copy(s,3,1);
end;

procedure TForm2.wwTable3CalcFields(DataSet: TDataset);

begin
wwTable3Rate2.Value := (wwTable3BASIC_SALARY RATE.Value/100);
wwTable3Total2.Value := (wwTable3TOTAL_SALARY.Value/100);
wwTable3Loc2.Value := (wwTable3LOC_ADJ.Value);

end;

procedure TForm2.wwDBComboDlglCustomDlg(Sender: TObject);
begin
KingPopupl.AlignSource := (Sender as TwwDBComboDlg);
KingPopupl.Execute;
end;

procedure TForm2.BitBtnlClick(Sender: TObject);
begin

Form2.Close;
end;

end.

60

Human Resources Editor =~~~ = M

Date of Birth:
| _»’IKeep Guessingl o

X U.S. Citizen? P
AGUILAR MARYM
l .+~ PERSONNEL OFFICER:

CA | 93955-0000]

Search For: - -

______________ _j'F'a'min Employment P'rvéﬁféren'ce:% AGU o

« Done

APosition AFinancial AE ducation ARetirement /

File Name: UEDITOR.PAS

unit Ueditor;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Wwkeycb, DBCtrls, DB, DBTables, Wwtable,
Wwdatsrc, ExtCtrls, Buttons, Tabs, wwdblook, Mask, Wwdbcomb, KingPop,
EPCalPop;

type
TfrmEditor = class(TForm)

Panell: TPanel;
TabSetl: TTabSet;
Bevell: TBevel;
Bevel2: TBevel;
BitBtnl: TBitBtn;
Notebookl: TNotebook;
DBTextl: TDBText;
DBText2: TDBText;
wwDataSourcel: TwwDataSource;

wwTablel: TwwTable;

GroupBoxl: TGroupBox;

wwIncrementalSearchl: TwwIncrementalSearch;
Imagel: TImage;

wwTablelNAME_PERS: TStringField;
wwTablelSSAN EMPL_CON_NR: TStringField;
wwTablelDT FEHB_REG_ELIG_EXPIR_P: TStringField;
wwTablelDRAWDOWN ACTION_ID_PROJ: TStringField;
wwTablelPERS_SCTY_ CLEAR_ELIG: TStringField;
wwTablelPART TIME INDCTR_PROJ: TStringField;
wwTablelLOCAL_ADDR_STREET: TStringField;
wwTablelLOCAL ADDR_CITY: TStringField;
wwTablelLOCAL ADDR_STATE: TStringField;
wwTablelADRS MAIL_ZIP: TStringField;
waablelBEST_LANGUAGE_CIV: TStringField;
wwTablelTOT_CR_HRS_ACAD: TSmallintField;
wwTablelTYPE CR_HRS_AGRGT: TSmallintField;
wwTablelEDUCATION_AREA_HIGH: TStringField;
wwTablelEDUC_LEVEL_CIV_ENTRY: TStringField;
waablelDT_LATEST_ENT_PRES_GR: TStringField;
wwTablelDT_ LAST_PROM: TStringField;
wwTablelDT TEMP_PROM_EXPIR: TStringField;
wwTablelGR_CIV_PERM: TStringField;
wwTablelPAY PLAN_PERM: TStringField;
wwTablelCOMP_LEV_PERM: TStringField;
wwTablelOCUPTNL SRS _PERM: TStringField;
wwTablelHANDCP RPRTBL: TSmallintField;
wwTablelHRS_ SCH_WEEK: TSmallintField;
wwTablelSTA PREC_EMPLM: TSmallintField;
wwTablelDT PROB_TRI_PRD_BEG: TStringField;
wwTablelDT SUP_MGR_PROB_ENDS: TStringField;
waablelSUPV_MGR_PROBN_COMPLTION: TStringField;
wwTablelDRAWDOWN _ACTION_ID: TStringField;
wwTablelAGCY_CD_TRANS_FR: TStringField;
wwTablelDT TVL_AGRMT_PCS_EXPIR: TStringField;
wwTablelPOSN_GR_CIV: TStringField;
wwTablelPROG_ELEMENT: TStringField;
wwTablelORG_STRUCT_ID_SHRED: TStringField;
wwTablelDRUG_TEST_RQD: TStringField;
wwTablelCPCN: TStringField;
wwTablelSUPV_STATUS: TSmallintField;
wwTablelBARG_UNIT_ STAT: TSmallintField;
wwTablelPOSN_TITLE: TStringField;
wwTablelCURR_PAY_ PLAN: TStringField;
wwTablelOCUPTNL_SRS: TStringField;
wwTablelCOMP_LEV: TStringField;
wwTablelFLSA_CAT: TStringField;
wwTablelPOSN_WRK_SCHED: TStringField;
wwTablelSTEP_IN_GRADE_CIV: TStringField;
wwTablelPAY RATE_DETERM: TStringField;
wwTablelDT _WGI_DUE: TStringField;
wwTablelFEGLI: TStringField;

wwTablelHEALTH PLANS: TStringField;
wwTablelHEALTH_ENRLM: TStringField;
wwTablelDT FEHB_EFF: TStringField;

62

wwTablelDT_TEMP_ELIG_FEHB: TStringField;
wwTablelDT LWOP_EXPIR: TStringField;
waablelDT_LWOP_SU_FUR_BEG: TStringField;
wwTablelBASIC_SALARY RATE: TIntegerField;
wwTablelLOC_ADJ: TIntegerField;

wwTablelADJ BASIC_PAY: TIntegerField;
wwTablelTOTAL SALARY: TIntegerField;
wwTablelFROZEN_SERVICE: TSmallintField;
wwTablelPREV_RETIREMENT COVG: TStringField;
wwTablelSEX: TStringField;
waablelRACE_NATIONAL_ORIGIN: TStringField;
wwTablelCITIZENSHIP: TSmallintField;
wwTablelFAM MBR_EMPL PREF: TStringField;
wwTablelDOB: TStringField;

wwTablelCNTY WORLD_CIT: TStringField;
wwTablelNTR_ACTION PERS: TStringField;
wwTablelLAST AUTH CD_1: TStringField;
wwTablelLAST AUTH CD_2: TStringField;
wwTablelRETIREMENT PLAN: TStringField;
wwTablelFERS COVERAGE: TStringField;
wwTablelANNUITANT INDICATOR: TStringField;
wwTablelDATE_EOD_CURR_AGCY: TStringField;
wwTablelDT_ARR_SVCG_CCPO: TStringField;
wwTablelDT CONV_CAR_BEG: TStringField;
wwTablelDT_CONV_REC_DUE: TStringField;
wwTablelDT_REC_CONV_BEG: TStringField;
wwTablelDT RTND GRADE_BEG: TStringField;
wwTablelDT_RTND_GRADE_EXPIR: TStringField;
wwTablelRTND_PAY PLAN: TStringField;
wwTablelRTND_GR_CIV: TStringField;
wwTablelRTND OCUPTNL_SRS: TStringField;
wwTablelRTND_STEP_IN_GRADE_CIV: TStringField;
wwTablelRTND_PAY TABLE_IDENT: TStringField;
wwTablelRTND_PAY BASIS: TStringField;
wwTablelRTND GRADE_FLAG_PROJ: TStringField;
wwTablelRTND_LOCALITY PCT: TSmallintField;
wwTablelVET PREF_APPT: TSmallintField;
wwTablelVET PREF_RIF: TSmallintField;
wwTablelTENURE_GP_EMPL: TSmallintField;
wwTablelAPPT _TYPE: TStringField;
wwTablelRESERVE_CATEGORY: TStringField;
wwTablelSCD_CIV_LEAVE: TStringField;
wwTablelSCD_CIV_RIF: TStringField;
wwTablelDT LAST_EQUIV_INC: TStringField;
wwTablelDT TEMP_APPT_EXPIR: TStringField;
wwTablelDT_VET_ REAJMNT CONV_DUE: TStringField;
wwTablelSCD_CIV: TStringField;
wwTablelDT_TEMP_REASMT EXP: TStringField;
wwTablelCREDITABLE _MIL_SVC: TSmallintField;
wwTablelORIG_APPT_AUTH CD_l: TStringField;
wwTablelDT RET_UNFM_SVC: TStringField;
wwTablelUNIF _SVS _COMP: TSmallintField;
wwTablelUNIF_SVC _DESIGN: TStringField;
wwTablelGR_RET: TSmallintField;
wwTablelMIL RET WAV _IND: TStringField;

63

wwTablelEXCP_RETM_PAY IND: TSmallintField;
waablelVETERANS_STATUS: TStringField;
wwTablelCCPO_SUSP_CD_1: TStringField;
wwTablelCCPO_SUSP DT_l: TStringField;
wwTablelCCPO_SUSP_CD_2: TStringField;
waablelCCPO_SUSP_DT_Z: TStringField;
wwTablelTYPE_OF EMPLMENT: TStringField;
wwTablelTSP_STATUS: TStringField;
wwTablelTSP_STATUS DATE: TStringField;
wwTablelTSP_SCD: TStringField;
wwTablelTSP_RATE: TSmallintField;
wwTablelTSP_EMPL AMT: TSmallintField;
wwTablelTSP_ELIGIBILITY DATE: TStringField;
waablelOBL_CPCN_FLAG: TStringField;
wwTablelNV_LOGIC_ ORGN_CODE: TStringField;
wwTablelNV_CIT BASIS: TStringField;
wwTablelNV_LOCAL_EMP_ID_NR: TStringField;
wwTablelNV_APPROP_CD: TStringField;
waablelCCPO_FOREIGN_COUNTRY: TStringField;
waablelCCPO_VISA__TYPES : TStringField;
wwTablelCCPO_VISA_EXP_DATES: TStringField;
wwTablelCCPO_SPOUSE_EMP_PRO: TStringField;
Panel2: TPanel;

wwDBComboBox1l: TwwDBComboBox;

DBEditl: TDBEdit;

Labell: TLabel;

Label2: TLabel;

wwDBLookupCombol: TwwDBLookupCombo;
wwTable2: TwwTable;

Label3: TLabel;

LabelS: TLabel;

DBCheckBoxl: TDBCheckBox;
wwDBLookupCombo2: TwwDBLookupCombo;
wwTable3: TwwTable;

GroupBox2: TGroupBox;

DBEdit5: TDBEdit;

DBEdit2: TDBEdit;

DBEdit4: TDBEdit;

DBEdit3: TDBEdit;

Editl: TEdit;

Label6: TLabel;

GroupBox3: TGroupBox;

wwDBLookupCombo4: TwwDBLookupCombo;
Label7: TLabel;

Label8: TLabel;

ComboBoxl: TComboBox;

GroupBox4: TGroupBox;

Labeld4: TLabel;

Labell0: TLabel;

Labell2: TLabel;

Labell3: TLabel;

Labelld4: TLabel;

Labell5: TLabel;

Labell6: TLabel;

Labell7: TLabel;

64

Labell8:
DBEdit6:
DBEdit7:
DBEdit8:
DBEdit9:
DBEdit10:
DBEditll:
DBEditl1l2:
DBEdit13:
DBEdit14:
LabelS: T
Labelll:
DBEdit15:
DBEditl16:
GroupBox5
Labell9:
Label20:
Label2l:
Label22:
Label?23:
Label24:
Label25:
Label26:
Label27:
Label28:
EPCalenda
SpeedButt
procedure
procedure
procedure
procedure
procedure
private
{ Private
public
{ Public
end;

var
frmEditor:

implementatio
{SR *.DFM}

procedure Tfr
begin
TabSetl.Tab
Notebookl.P
end;

TLabel;
TDBEdit;
TDBEdit;
TDBEdit;
TDBEdit;
TDBEdit;
TDBEdit;
TDBEdit;
TDBEdit;
TDBEdit;
Label;
TLabel;
TDBEdit;
TDBEdit;
: TGroupBox;
TLabel;
TLabel;
TLabel;
TLabel;
TLabel;
TLabel;
TLabel;
TLabel;
TLabel;
TLabel;
rPopupl: TEPCalendarPopup;
onl: TSpeedButton;

FormCreate (Sender: TObject);

TabSetlClick(Sender: TObject);
wwDataSourcelDataChange(Sender: TObject; Field: TField);
SpeedButtonlClick(Sender: TObject);
BitBtnlClick(Sender: TObject);
declarations }
declarations }
TfrmEditor;
n
mEditor.FormCreate(Sender: TObject);

s := Notebookl.Pages;
ageIndex := TabSetl.TabIndex;

procedure TfrmEditor.TabSetlClick(Sender: TObject);
begin

Notebookl.P
end;

ageIndex := TabSetl.TabIndex;

procedure TfrmEditor.wwDataSourcelDataChange(Sender: TObject; Field: TField);
begin

if wwTablelNAME PERS.AsString = 'AGUILAR MARY M' then
begin
Imagel.Visible := true;
Editl.Text := 'Keep Guessing';
end
else
begin
Imagel.Visible := False;
Editl.Text := '';
end;
end;

procedure TfrmEditor.SpeedButtonlClick(Sender: TObject);
var

P: TPoint;
begin
with (Sender as TSpeedButton) do
P := Point(Left, Top + Height - 1);
EPCalendarPopupl.Popup(Date, P.X, P.Y);
end;

procedure TfrmEditor.BitBtnlClick(Sender: TObject);
begin

close;

end;

end.

66

Data Element Name

- | DT-LIMITED-APPT-EXP-PROJ
DT-LWOP-EXPIR-PROJ 006 6 DATE
AUTH-CODE-1-PROJ 003 12 CHAR
NAF-GUAR-WEEK-HRS 002 15 NUMBER
NAF-DEPN-STAT 001 17 NUMBER
NAF-GRP-INS-CLASS-CODE 002 18 CHAR
NAF-DT-GRP-INS-EFF 006 20 ‘DATE
DATE-LAST-EMPL-AUDIT 006 26 DATE
SYS-DATE-TRANS-INPUT 006 32 DATE

ABD
ABE

File Name: UDESIRES.PAS

unit Udesires;
interface

uses
SysUtils} WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, DB, DBTables, Grids, DBGrids, DBLookup, StdCtrls,
TabNotBk, Menus;

type
TfrmDesire = class(TForm)

Tablel: TTable;
TablelDIN: TStringField;
TabbedNotebookl: TTabbedNotebook;
ListBoxl: TListBox;
ListBox2: TListBox;
StringGridl: TStringGrid;
TablelDATA NAME: TStringField;
TablelFSV: TStringField;
MainMenul: TMainMenu;
N1l: TMenultem;
N2: TMenultem;
N3: TMenultem;
N4: TMenultem;
N5: TMenultem;

67

N6: TMenultem;

N7: TMenultem;

N8: TMenultem;

0l1: TMenultem;

TablelC: TStringField;

procedure ListBoxlGetItem(Sender: TObject; Index: Longint;
var ItemString: OpenString);

procedure FormCreate(Sender: TObject);

procedure ListBox1DblClick(Sender: TObject);

procedure N2Click(Sender: TObject);

procedure D1Click(Sender: TObject);

procedure PlClick(Sender: TObject);

procedure N7Click(Sender: TObject);

procedure 0OlClick(Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

frmDesire: TfrmDesire;
implementation
{SR *.DFM}

uses
UCPDSFrm,
UMerge;

procedure TfrmDesire.ListBoxlGetItem(Sender: TObject; Index: Longint;
var ItemString: OpenString);
begin
Tablel.First;
while not Tablel.EOF do
begin
ItemString := Tablel.FieldByName('DIN').AsString;
Tablel.Next;
end;
end;

procedure TfrmDesire.FormCreate(Sender: TObject);
begin
Tablel.First;
while (Tablel.FieldByName('DIN').AsString < 'NAA') do
begin
ListBoxl.Items.Add(Tablel.FieldByName('DIN').AsString);
Tablel.Next;
end;
while (Tablel.FieldByName('DIN').AsString < 'Y##') do
begin
ListBox2.Items.Add(Tablel.FieldByName('DIN').AsString);
Tablel.Next;
end;

68

StringGridl.Cells{1,0) := 'DIN';
StringGridl.Cells[2,0] 'Data Element Name';

.
il

StringGridl.Cells(3,0] := 'Length';

StringGridl.Cells{4,0] := 'Offset';

StringGridl.Cells{5,0)]) := 'Type';
end;

procedure TfrmDesire.ListBox1lDblClick(Sender: TObject);
var
FieldType: String{10};
C: String(2};
begin
Tablel.First;
if StringGridl.Tag = StringGridl.RowCount then
begin
StringGridl.RowCount := StringGridl.RowCount + 1;
StringGridl.TopRow := StringGridl.TopRow + 1;
StringGridl.Row := StringGridl.RowCount - 1;
end;
StringGridl.Cells(l, StringGridl.Tag} :=
(Sender as TListBox).Items[(Sender as TListBox).ItemIndex];
Tablel.FindKey([StringGridl.Cells([1l, StringGridl.Tag}});
StringGridl.Cells(2, StringGridl.Tag] :=
Tablel.FieldByName('DATA_NAME').AsString;
StringGridl.Cells(3, StringGridl.Tag] :=
Tablel.FieldByName('FSV').AsString;

if StringGridl.Tag = 1 then StringGridl.Cells(4, StringGridl.Tag) := 'O’

else
StringGridl.Cells{4, StringGridl.Tag] :=

IntToStr(StrTolnt (StringGridl.Cells(4, (StringGridl.Tag - 1)]) +
StrToInt (StringGridl.Cells([3, (StringGridl.Tag - 1)]));

C := Tablel.FieldByName('C').AsString;

if € = 'A' then FieldType := 'CHAR';
if € = 'X' then FieldType := 'CHAR';
if C = 'D' then FieldType := 'DATE';

if C = 'N' then
if (Tablel.FieldByName('FSV').AsInteger) < 5 then
FieldType := 'NUMBER’

else
FieldType := 'LONGINT';
StringGridl.Cells(5, StringGridl.Tag) := FieldType;
StringGridl.Tag := StringGridl.Tag + 1;

end;

procedure TfrmDesire.N2Click(Sender: TObject);
var
i: integer;
begin
if MessageDlg('This Will Remove All Data' + Chr(13) +
'From The Current Project.' + Chr(13) + °

mtWarning, [mbYes, mbNo], 0) = mrYes then
begin
StringGridl.RowCount := 16;
StringGridl.Tag := 1;

Continue?’,

for i := 1 to StringGridl.RowCount do

begin
StringGridl.Cells{1l, 1i]
StringGridl.Cells([2, 1] := '';
StringGridl.Cells(3, i] := '';
StringGridl.Cells(4, i} = '';
StringGridl.Cells(5, i}

end;

end;

.
]

end;

procedure TfrmDesire.D1Click(Sender: TObject);
var

Header: String{l125]);

S: String[1l0};

P: PChar;

Fl: TextFile;

I: Integer;

DINList: TStringList;

begin
frmDesireName := TfrmDesireName.Create(Self);
try
frmDesireName.Edit2.Text := IntToStr(StrTolnt(StringGridl.Cells(3,

(StringGridl.Tag - 1)]) +
. StrTolnt(StringGridl.Cells(4, (StringGridl.Tag
- 1)]) + 10);
frmDesireName.ShowModal;
if frmDesireName.ModalResult = mrOK then
begin
Header := 'DESIRE.ID POSN-MGT RK FOR FRANKIE.PERS RECD CA CCPO QH.SL IF ' +
'"BAA > " ".OT DISK LABEL ' + frmDesireName.Editl.Text + ' RECD ' +
frmDesireName.Edit2.Text + ' BLOC 1.WR ';
DINList := TStringList.Create;
DINList.Add(Header);
for I := 1 to (StringGridl.Tag -1) do.
begin
S := IntToStr(StrTolnt(StringGridl.Cells{4, i])) + 1) + ' ' +
StringGridl.Cells{1l, i} + ' ';
DINList.Add(S);
end;
DINList.SaveToFile(frmDesireName.Editl.Text + '.dsr');
end;
finally
frmDesireName.Free;
DINList.Free;
end;
end;

procedure TfrmDesire.PlClick(Sender: TObject);
var

Header: String{30];

S: String(4};

L: String(4];

I : Integer;

DINList: TStringList;

70

begin
DINList := TStringList.Create;
frmSchemaName := TfrmSchemaName.Create(Self);
try
frmSchemaName.ShowModal;
if frmSchemaName.ModalResult = mrOK then
begin
DINList.Add(’['+frmSchemaName.Editl.Text+']');
DINList.Add('FILETYPE = fixed');
DINList.Add('CHARSET = ascii')j
DINList.Add('DELIMITER =");
DINList.Add('Separator =');
for I := 1 to (StringGridl.Tag -1) do
begin
S := StringGridl.Cells(3, I}:
S := Copy(S, 2, 2)i
L := StringGridl.Cells(4, 1];
if Length(L) < 2 then L := '0' + L;
DINList.Add('Field'+IntToStr(I)+'=" +StringGridl.Cells(2,I]+', "+
StringGridl.Cells[S,I]+',‘+S+',OO,'+ L);
end;
DINList.SaveToFile(frm5chemaName.Edit1.Text+'.sch');
end;
finally
DINList.Free;
frmSchemaName.Free;
end;
end;

procedure TfrmDesire.OlClick(Sender: TObject);
begin

DlClick(Sender as TObject);

PiClick(Sender as Tobject);
end;

procedure TfrmDesire.N7Click(Sender: TObject);
begin

Close;
end;

Human Resources Data Conversion Tool

o

% Alias Name:

i

‘Destination Database -~~~

Table Name:

[X cancel

A Uovert

,__,

File Name: UTESTONE.PAS

unit Utestone;
interface

uses
SysUtils, WinTypes, WinProcs, Messages,
Forms, Dialogs, StdCtrls, DBTables, DB,

type

TfrmMaintenance =
Source: TTable;
Destination: TTable;
BatchMovel: TBatchMove;
DataSourcel: TDataSource;
DBGridl: TDBGrid;
CancelBtn: TBitBtn;
HelpBtn: TBitBtn;
ConvertBtn: TBitBtn;
SourceGrp: TGroupBox;
Labell: TLabel;
SrcAlias: TComboBox;

class(TForm)

72

Classes, Graphics,
Grids, DBGrids, Buttons,

Controls,

FileCtrl;

Label2: TLabel;

SrcTable: TComboBox;

DestGrp: TGroupBox;

Label3: TLabel;

Label4: TLabel;

DestAlias: TComboBox;

DestTable: TComboBox;

FileListBox1l: TFileListBox;

procedure ButtonlClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure SrcAliasChange(Sender: TObject);
procedure CancelBtnClick(Sender: TObject);
procedure SrcTableChange(Sender: TObject);
procedure DestAliasChange(Sender: TObject);
procedure DestTableExit(Sender: TObject);
procedure ConvertBtnClick(Sender: TObject);
procedure DestTableChange(Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

frmMaintenance: TfrmMaintenance;
implementation
{SR *.DFM}
procedure TfrmMaintenance.ButtonlClick(Sender: TObject);
begin
batchmovel.execute;

end;

procedure TfrmMaintenance.FormCreate(Sender: TObject);

begin
Session.GetAliasNames(SrcAlias.Items);
DestAlias.Items := SrcAlias.Items;
end;

procedure TfrmMaintenance.SrcAliasChange(Sender: TObject);

begin
SrcTable.Clear; .
Session.GetAliasParams(SrcAlias.Items[SrcAlias.ItemIndex), SrcTable.Items);
FileListBoxl.Directory := Copy(SrcTable.Items{0) , 6, 30) + '\';
SrcTable.Items.Clear;
SrcTable.Items := FileListBoxl.Items;

end;

procedure TfrmMaintenance.DestAliasChange(Sender: TObject);
begin
Session.GetTableNames (DestAlias.Items[DestAlias.ItemIndex], '', True, False,
DestTable.Items);
end;

procedure TfrmMaintenance.SrcTableChange(Sender: TObject);

var

FileExt : String{3];

begin
Source.Active := False;
Source.DatabaseName := SrcAlias.Items({SrcAlias.ItemIndex];
Source.TableName := SrcTable.Items[SrcTable.ItemIndex]};
FileExt := ExtractFileExt(Source.TableName);
if FileExt = 'db' then Source.TableType := ttParadox else
if FileExt = 'dbf' then Source.TableType := ttDBase else
if FileExt = 'txt' then Source.TableType := ttASCII else

Source.TableType := ttDefault;

Source.Active := True;

end;

procedure TfrmMaintenance
begin

.DestTableChange(Sender: TObject);

if DestTable.Text <> '' then ConvertBtn.Enabled := True;
end;
procedure TfrmMaintenance.DestTableExit(Sender: TObject);
var
FileExt : String(3};
begin

Destination.DatabaseName
Destination.TableName

DestAlias.ltems{DestAlias.ItemIndex];
DestTable.Text;

FileExt := ExtractFileExt(Destination.TableName);

if FileExt = '.db' then Destination.TableType := ttParadox else
if FileExt = '.dbf' then Destination.TableType := ttDBase else
if FileExt = '.txt' then Destination.TableType := ttASCII else

Destination.TableType
end;

:= ttParadox;

procedure TfrmMaintenance.ConvertBtnClick(Sender: TObject);
const
MSG
begin
Source.Active False;
BatchMovel.Execute;
Source.Active := True;
if MessageDlg(MSG, mtInformation,
CancelBtn.Click;
end;

- 1

Successful Conversion!'+ Chr(13) +'Return To Main Application?';

{mbYes, mbNo], 0) mrYes then

procedure TfrmMaintenance.CancelBtnClick(Sender: TObject);
begin

Close;
end;

end.

74

LIST OF REFERENCES

. Waterson, Karen, Client/Server Technology for Managers, Addison-Wesley
Publishing Company, 1995.

Orfali, Robert, Dan Harkley, and Jeri Edwards, Essential Client/Server Survival
Guide, Van Nostrand Reinhold, 1994,

. Gartner Group conference presentation, Client/Server Computing: Where Does It
Lead?, Gartner Group, 1994.

. Vaskevitch, David, Client/Server Strategies, A Survival Guide for Corporate
Reengineers, IDG Books Worldwide, Inc., 1993.

Kroenke, David M., Database Processing: Fundamentals, Design, Implementation,
Fourth Edition, MacMillan Publishing Company, 1992.

Vaughn, Larry T., Client Server System Design & Implementation, McGraw-Hill,
Inc., 1994,

Taylor, Lloyd, comp.client-server Frequently Asked Questions, April 1995.

Brooks, Fredrick, The Mythical Man-Month, Addison-Wesley Publishing Company,
1989.

. Date, C. J., An Introduction To Database Systems, Third Edition, Addison-Wesley
Publishing Company, 1982.

76

Initial Distribution List

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5101

3. Magdi N. Kamel, Code SM/Ka
Department of Systems Management
Naval Postgraduate School
Monterey, CA 93943-5002

4. James C. Emery, Code SM/Ey
Department of Systems Management
Naval Postgraduate School
Monterey, CA 93943-5002

5. Mary Aguilar, Director of Human Resources
Human Resources, Office
Naval Postgraduate School
Monterey, CA 93943-5002

6. Charles Calvert, Developer Relations
Borland International
100 Borland Way
Scotts Valley, CA 95066-3249

7. LT David R. McDermitt, USN
1279 Sixth Street
Monterey, CA 93940

